We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Self-Propelling Nanorobots Reduce Bladder Tumors by 90%

By HospiMedica International staff writers
Posted on 16 Jan 2024
Print article
Image: Accumulation of nanorobots in the tumor visualized through ad hoc developed microscopy techniques (Photo courtesy of IRB Barcelona)
Image: Accumulation of nanorobots in the tumor visualized through ad hoc developed microscopy techniques (Photo courtesy of IRB Barcelona)

Bladder cancer is one of the most common cancers worldwide, especially among men where it ranks fourth. It has a high recurrence rate, with about half of the cases recurring within five years, creating the need for continuous monitoring. This constant need for follow-up and repeated treatments makes bladder cancer treatment one of the costliest. While current treatments, which involve administering drugs directly into the bladder, offer favorable survival rates, their therapeutic effectiveness is still limited. An emerging and promising approach is the use of nanoparticles, particularly nanorobots, that can self-propel and deliver therapeutic agents directly to cancer cells.

A recent breakthrough by scientists at IRB Barcelona (Barcelona, Spain) has demonstrated the potential of urea-powered nanorobots in bladder cancer treatment. In their study, the team achieved a significant 90% reduction in bladder tumor size in mice using a single dose administered by these nanorobots. The nanorobots are essentially tiny machines, composed of porous silica spheres. Their surfaces are equipped with various components, each serving a specific purpose. One key component is the enzyme urease, which reacts with urea in urine, propelling the nanorobot forward. Another crucial element is radioactive iodine, widely used in localized tumor treatment.

Understanding how these nanorobots penetrate the tumor was challenging, as they do not possess specific antibodies for tumor recognition and because tumor tissue is generally stiffer than healthy tissue. However, the team discovered that the nanorobots could break down the tumor's extracellular matrix by locally increasing pH through their self-propelling action. This action enhances their penetration into and accumulation within the tumor. The researchers observed that while the nanorobots collide with the urothelium, acting as if they hit a wall, they effectively penetrate and accumulate inside the spongier tumor tissue.

The mobility of these nanobots significantly increases their chances of reaching and impacting the tumor. Additionally, the localized delivery of these nanorobots, carrying the radioisotope, reduces potential side effects. The high accumulation of these nanorobots in tumor tissue also intensifies the radiotherapeutic impact. This research offers promising directions for bladder cancer treatment, potentially reducing hospital stays, lowering costs, and improving patient comfort. The next research phase is already in progress, focusing on whether tumors recur post-treatment with these nanorobots.

"With a single dose, we observed a 90% decrease in tumor volume. This is significantly more efficient given that patients with this type of tumor typically have 6 to 14 hospital appointments with current treatments," said Samuel Sánchez, ICREA research professor at IBEC and leader of the study. “Such a treatment approach would enhance efficiency, reducing the length of hospitalization and treatment costs.”

Related Links:
IRB Barcelona

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Multilevel Self-Loading Stretcher
CARRERA XL

Print article

Channels

Surgical Techniques

view channel
Image: The hyperspectral imaging system extracts molecular vibrations of different resins and distinguishes between them with high reproducibility (Photo courtesy of Hiroshi Takemura from Tokyo University of Science)

Novel Rigid Endoscope System Enables Deep Tissue Imaging During Surgery

Hyperspectral imaging (HSI) is an advanced technique that captures and processes information across a given electromagnetic spectrum. Near-infrared hyperspectral imaging (NIR-HSI) has particularly gained... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.