We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Sweat-Analyzing Tattoo Monitors Biomarkers Linked To Diseases

By HospiMedica International staff writers
Posted on 29 Jan 2024
Print article
Image: The thin sweat monitor can be seen above the ring on this woman’s hand (Photo courtesy of UMass Amherst)
Image: The thin sweat monitor can be seen above the ring on this woman’s hand (Photo courtesy of UMass Amherst)

Several crucial biomolecules present in sweat can offer key insights into human performance and their potential connections to various diseases. However, the current methods for analyzing sweat are cumbersome and time-intensive, confined predominantly to laboratory environments. Typically, sweat analysis is conducted in clinical settings utilizing large, refrigerator-sized machines through liquid chromatography-mass spectroscopy. This process involves collecting a sweat sample using a swab, followed by storage and analysis, making it a slow and cost-ineffective approach. To address these limitations, researchers are now in the process of developing a new sweat monitor that can be applied to the skin like a temporary tattoo, enabling on-the-spot assessment of crucial biomolecules. These novel sweat tattoos aim to provide individuals with deeper insights into their health and assist researchers in discovering early markers of diseases.

The research by the team at the University of Massachusetts Amherst (Amherst, MA, USA) involves a merger of two research tracks. The first track focuses on the development of a graphene-based tattoo that acts as a passive electrode for monitoring the body's electrical activity. The second track focuses on the study of rigid graphene-based biosensors. The research will be backed by a two-year, USD 200,000 grant from the National Science Foundation to develop graphene-based tattoos. In the initial phase of their research, the team will focus on tracking cortisol levels. Cortisol is a biomarker linked to stress, stroke, Cushing's syndrome, and Addison’s disease, a rare chronic condition. The goal is to eventually broaden the scope of this technology to include other compounds, such as glucose, lactate, estrogen, inflammation markers, and more, once the technique is fully established.

“It’s almost entirely transparent, exceptionally conductive and it really goes into this perfect contact with the human skin. It’s imperceptibly self-adhesive—we don’t apply any adhesive, we literally transfer it on skin,” said research lead and assistant professor of biomedical engineering, Dmitry Kireev. “We want to have routine analysis [of these bio analytes] so we don’t only get information about people when they’re sick or when they have the problem, but before it happens.”

Related Links:
University of Massachusetts Amherst

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Digital ECG Machine
ECG – 11D

Print article

Channels

Surgical Techniques

view channel
Image: Real-time navigation is a useful tool for ablation procedures to destroy tumors in the liver (Photo courtesy of University of Cincinnati)

Real-Time Navigation Found To Be Useful Tool for Liver Cancer Procedures

Liver cancer, ranking as the world's fourth most common cause of cancer-related deaths, presents a significant health challenge. For certain patients, ablation offers a less invasive alternative to traditional... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.