We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Captures ECG Patterns to Predict Future Sudden Cardiac Arrest

By HospiMedica International staff writers
Posted on 28 Feb 2024
Print article
Image: AI captures electrocardiogram patterns that could signal a future sudden cardiac arrest (Photo courtesy of 123RF)
Image: AI captures electrocardiogram patterns that could signal a future sudden cardiac arrest (Photo courtesy of 123RF)

Sudden cardiac arrest is a critical emergency, leading to death in 90% of cases within minutes. This condition occurs when the heart's electrical activity abruptly changes, causing it to stop beating. While heart conditions increase the risk, sudden cardiac arrest can also strike those without known heart issues. Preventing this event is crucial, and innovative clinical tools are essential for this purpose. Notably, artificial intelligence (AI) algorithms are showing promise in predicting sudden cardiac arrest, potentially helping doctors identify at-risk patients.

Now, two new studies by investigators at Cedars-Sinai (Los Angeles, CA, USA) support the use of AI in sudden cardiac arrest prediction. The first study involved training a deep learning algorithm to analyze electrocardiogram (ECG) patterns, which are recordings of heart electrical activity. The model examined ECGs from individuals who had suffered sudden cardiac arrest and those who had not, including 1,827 pre-cardiac arrest ECGs from 1,796 individuals who later experienced sudden cardiac arrest, and 1,342 ECGs from 1,325 people who did not. This Cedars-Sinai-developed AI model outperformed conventional methods, like the ECG risk score, in predicting out-of-hospital sudden cardiac arrest.

The second study focused on distinguishing between two causes of sudden cardiac arrest: pulseless electrical activity, where the heart’s electrical signals are too faint to produce a heartbeat, and ventricular fibrillation, an irregular heartbeat that can be treated with a defibrillator. After analyzing ECG patterns and patient characteristics, the researchers identified specific risk factors for each type. Patients with pulseless electrical activity sudden cardiac arrest were often older, overweight, anemic, or experienced shortness of breath. In contrast, those with ventricular fibrillation tended to be younger and had a history of coronary artery disease or chest pain as a warning sign.

“These studies exemplify the potential for AI to detect patterns in the body that the human eye and standard medical tests cannot,” said Paul Noble, MD, the Vera and Paul Guerin Family Distinguished Chair in Pulmonary Medicine and chair of the Department of Medicine at Cedars-Sinai. “We are getting closer to being able to use AI to prevent dangerous events such as sudden cardiac arrest.”

Related Links:
Cedars-Sinai

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Endoscopy Display
E150
New
Plate System
ADIRA XLIF Plate System

Print article

Channels

Surgical Techniques

view channel
Image: The MagDI System for side-to-side duodeno-ileal anastomosis has been granted FDA De Novo marketing authorization (Photo courtesy of GT Metabolic Solution)

Novel Magnet Compression Anastomosis Technology Ensures Fewer Complications, Bleeds or Leaks

Traditional anastomotic devices like staples or sutures can be challenging to apply in tight spaces during minimally invasive surgeries and may harm bowel tissue by cutting or piercing it, leaving foreign... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.