We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
77 ELEKTRONIKA

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Electrochemical Sensor Monitors Urine Biomarkers of Neurological Diseases in Real Time

By HospiMedica International staff writers
Posted on 11 Mar 2024
Print article
Image: The electrochemical sensor can be placed on the forehead to gain real-time data on neurological conditions (Photo courtesy of Penn State)
Image: The electrochemical sensor can be placed on the forehead to gain real-time data on neurological conditions (Photo courtesy of Penn State)

The levels of dopamine and tyrosine in the brain, a neurotransmitter and an amino acid, respectively, are known to influence human emotions and behavior. These levels are especially significant for individuals with neurological disorders such as Parkinson’s disease, schizophrenia, Alzheimer’s disease, and hypochondria. Consequently, the non-invasive, real-time monitoring of dopamine and tyrosine levels in biological fluids is essential for the effective health monitoring and treatment evaluation of patients with these conditions. While existing methods like capillary electrophoresis, high-performance liquid chromatography, ultraviolet spectrophotometry, and fluorescence are used to measure these biomarkers, they rely on costly equipment and fail to offer continuous monitoring. Now, researchers have developed a highly sensitive and cost-efficient sensor that can more accurately track the concentration of dopamine and tyrosine in bodily fluids such as sweat or urine.

The new sensor, developed by researchers at Penn State (University Park, PA, USA), offers a promising tool for managing neurological diseases by providing instant data about a patient’s condition, thereby enabling more precise administration of pain medications like paracetamol. This innovation uses titanium dioxide (TiO2), recognized for its high biocompatibility and reactivity, as an effective sensing material to detect dopamine and tyrosine. Through the use of polymer-assisted deposition, the team has successfully fabricated a high-quality TiO2 film at an economical price. The film can be patterned via laser scribing and transferred onto flexible or stretchable materials like carbon cloth to serve as working electrodes in the electrochemical sensor. This sensor can then be integrated into practical applications such as skin patches or smart diapers.

Utilizing a skin patch or a smart diaper as a sensor offers several advantages over traditional blood tests, which cannot be performed continuously and only provide momentary data. Electrochemical detection in sweat can allow continuous monitoring of metabolites and drugs. Urine analysis, being a quick and convenient method, can significantly aid in the timely treatment of patients with limited mobility. The incorporation of a flexible electrochemical sensor with a wireless module into a disposable diaper has led to the creation of a "smart" diaper. This diaper facilitates the real-time, wireless analysis of dopamine levels in urine and wetting patterns, proving particularly beneficial for adults with restricted mobility, like the elderly or post-surgery patients. Moreover, due to the sensors' supple and thin design, the smart diaper ensures comfort and prevents skin irritation even after extended wear.

Related Links:
Penn State

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Multi-Parameter Patient Monitor
TR6628-7

Print article

Channels

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.