We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Novel Left Ventricular Assist Device Could Provide Alternative Treatment Option to Cardiac Transplantation

By HospiMedica International staff writers
Posted on 12 Mar 2024
Print article
Image: The novel LVAD could also offer an alternative treatment option to long-term support in end-stage heart failure (Photo courtesy of Georgia Tech)
Image: The novel LVAD could also offer an alternative treatment option to long-term support in end-stage heart failure (Photo courtesy of Georgia Tech)

In the United States, heart failure affects nearly seven million people, with about 400,000 deaths annually related to the condition. It often leads to reduced mobility, diminished quality of life, and inability to work, thus presenting a substantial public health care challenge. Heart failure is a deteriorating disease, and no effective treatment exists for its end stage. While cardiac transplantation remains the sole option for many, the scarcity of donor hearts is a significant limitation. Left ventricular assist device (LVAD) heart pumps offer a vital alternative, aiding patients with end-stage heart failure in maintaining blood circulation. LVAD implantation, however, is not without its complications. These include infection, blood clotting (thrombosis), stroke, and bleeding, largely attributed to blood damage by the implanted devices. These issues often necessitate invasive surgeries. Another major concern with current LVADs is the percutaneous drivelines used for powering the device. These drivelines, penetrating the skin, can lead to infections, rehospitalizations, and further surgeries. Additionally, they limit patient mobility, adversely affecting their quality of life.

Now, a multi-institutional research project led by the Georgia Institute of Technology (Georgia Tech, Atlanta, GA, USA) aims to develop an innovative LVAD as a treatment alternative to cardiac transplantation and as long-term support in end-stage heart failure. This project aims to rectify the shortcomings of existing LVADs, thereby making the therapy more efficient and less invasive. The proposed device enhancements aim to reduce blood damage, blood clot formation, and complications from drivelines, such as infection and mobility restrictions. The research team combines interdisciplinary expertise, encompassing advanced engineering designs, antithrombotic slippery hydrophilic (SLIC) coatings, wireless power transfer systems, and magnetically levitated driving mechanisms, along with extensive preclinical testing. Upon completion, following clinical trials and regulatory approvals, this new LVAD could offer a significantly less invasive long-term support option for heart failure patients. This SLIC LVAD holds promise not only for civilian use but also for benefiting military personnel and veterans. Additionally, many of the groundbreaking technologies developed, like wireless power transfer for medical devices and antithrombotic coatings, have potential applications beyond this specific project.

Related Links:
Georgia Tech

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Extended Stay Trolley
E-MED One Day EST

Print article

Channels

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.