We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App

Millimeter-Scale, Chip-Less and Battery-Less Implant Wirelessly Monitors Health Parameters

By HospiMedica International staff writers
Posted on 21 Mar 2024
Print article
Image: The miniaturized implantable sensor eliminates the need for transcutaneous wires, integrated circuit chips, or bulky readout equipment (Photo courtesy of Peking University)
Image: The miniaturized implantable sensor eliminates the need for transcutaneous wires, integrated circuit chips, or bulky readout equipment (Photo courtesy of Peking University)

Implantable sensors are capable of directly interfacing with different organs accurately evaluating an individual’s health status. However, deriving signals from such sensors primarily requires transcutaneous wires, integrated circuit chips, or cumbersome readout equipment. All this raises the risks of infection, reduces biocompatibility, or limits portability. Now, scientists have developed a set of millimeter-scale, chip-less, and battery-free magnetic implants paired with a fully integrated wearable device for measuring biophysical and biochemical signals.

The millimeter-scale, chip-less, and battery-less implant developed by scientists from Peking University (Beijing, China) allows for the wireless monitoring of various health indicators without the need for wires that penetrate the skin, integrated circuit chips, or large, bulky reading devices. This new approach minimizes the risk of infection, enhances biocompatibility, and significantly improves the ease of carrying the monitoring equipment. The system consists of millimeter-sized, chip-less, and battery-less magnetic implants that communicate wirelessly with a wearable device worn on the skin. This wearable device triggers vibrations in the magnetic implants and then captures the resulting motion. The movement of the implants provides accurate information about the biophysical state around the implants and the concentration of certain biochemicals, depending on how the implant's surface has been modified.

In tests conducted on rats, this system was able to measure vital health parameters such as the viscosity of cerebrospinal fluid, intracranial pressure, and glucose levels effectively. Its compact design opens up possibilities for the continuous, wireless monitoring of a wide range of biophysical and biochemical states within living organisms. This system's adaptability means it can be used to monitor various important health metrics throughout the body. This includes cardiovascular measurements such as blood pressure and blood viscosity, dental and orthopedic pressures, abdominal pressure, and even the distribution of molecules and cells within the body. This versatility heralds a new era in diagnosing, treating, and managing a broad spectrum of acute and chronic diseases.

The development of these tiny magnetic implants represents a significant advancement in health monitoring technology, potentially revolutionizing medical practices. With further development, this technology could significantly improve healthcare standards, empowering individuals to manage their health with an unprecedented level of precision and convenience. However, the long-term stability and biocompatibility of the magnetic implants pose challenges that need to be addressed through further research and development. Despite these challenges, ongoing advancements in technology and further explorations in research are expected to effectively tackle these issues.

“Our miniaturized system presents exciting possibilities for advancing health monitoring,” said Han Mengdi from Peking University, the lead researcher of this project. “By inserting a tiny magnetic implant into the body, it can provide a rich set of real-time data related to your health status. We aim to use such magnetic implants to enhance the way we monitor and manage health.”

Related Links:
Peking University

Gold Member
Solid State Kv/Dose Multi-Sensor
Gold Member
12-Channel ECG
Silver Member
Compact 14-Day Uninterrupted Holter ECG

Print article


Surgical Techniques

view channel
Image: The endoscopic device can 3D image the stiffness of individual biological cells and complex organisms (Photo courtesy of University of Nottingham)

World’s First Microscopic Probe to Revolutionize Early Cancer Diagnosis

In the early stages of cancer, the cells are significantly softer than normal cells, which facilitates their movement through small spaces and contributes to the rapid spread of the disease, a process... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.