We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




New Machine Learning Models Help Predict Heart Disease Risk in Women

By HospiMedica International staff writers
Posted on 25 Apr 2024
Print article
Image: New machine learning models can help solve the problem of underdiagnosed heart disease in women (Photo courtesy of 123RF)
Image: New machine learning models can help solve the problem of underdiagnosed heart disease in women (Photo courtesy of 123RF)

In the field of cardiac health, cardiovascular disease is notably underdiagnosed in women compared to men. The commonly used Framingham Risk Score, which predicts the likelihood of developing cardiovascular disease within the next 10 years, is based on specific criteria including age, sex, cholesterol levels, and blood pressure. However, this does not account for anatomical differences between sexes; female hearts, for example, are typically smaller and have thinner walls. Consequently, using the same diagnostic standards for both sexes means that women's hearts need to increase disproportionally more than men’s to meet the same risk criteria. A team of researchers has now built more accurate cardiovascular risk models than the Framingham Risk Score using a large dataset and have also quantified the underdiagnosis of women compared to men.

Researchers at Stanford University (Stanford, CA, USA) quantified the underdiagnosis of women compared to men and found that the use of sex-neutral criteria results in significant underdiagnosis of female patients. To achieve more accurate predictions for both sexes, they incorporated four additional metrics absent in the Framingham Risk Score: cardiac magnetic resonance imaging, pulse wave analysis, EKGs, and carotid ultrasounds. Utilizing data from over 20,000 individuals in the UK Biobank—a comprehensive biomedical database of around half a million UK residents aged 40 and over—they applied machine learning techniques. They found that EKGs were particularly effective in enhancing cardiovascular disease detection in both sexes. Despite this, traditional risk factors remain valuable for assessing risk, according to the researchers.

This study marks the first step towards reevaluating risk factors for heart disease by incorporating advanced technologies to improve risk prediction. Nevertheless, the study faces limitations that future research should address. One such limitation is the binary treatment of sex in the UK Biobank, ignoring the complex nature of sex involving hormones, chromosomes, and physical traits that may not fit neatly into 'male' or 'female' categories. Moreover, the study's focus on middle-aged and older UK residents may limit the applicability of the findings to other demographic groups and geographical locations.

“We found that that sex-neutral criteria fail to diagnose women adequately. If sex-specific criteria were used, this underdiagnosis would be less severe,” said Skyler St. Pierre, a researcher at Stanford University's Living Matter Lab. “We also found the best exam to improve detection of cardiovascular disease in both men and women is the electrocardiogram (EKG).”

“While traditional clinical models are easy to use, we can now use machine learning to comb through thousands of other possible factors to find new, meaningful features that could significantly improve early detection of disease,” added St. Pierre.

Related Links:
Stanford University

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Portable EEG Amplifier
Okti

Print article

Channels

Surgical Techniques

view channel
Image: Concept of the wirelessly actuated undulating pump and its integration into an esophageal stent (Photo courtesy of Advanced Functional Materials/ doi.org/10.1002/adfm.202405865)

Wirelessly Activated Robotic Device Aids Digestion in Patients with Compromised Organs

The transport of fluids and solids is essential in the human body, driven by a wave-like movement in the lumen known as peristalsis. However, peristalsis can be disrupted in patients who have obstructions... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.