We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Radcal

Download Mobile App




New Low-Energy Defibrillation Method Controls Cardiac Arrhythmias

By HospiMedica International staff writers
Posted on 25 Apr 2024
Print article
Image: Spatial-temporal excitation pattern during cardiac fibrillation on the surface of heart (field of view 6 x 6 cm2). Color code: black = resting, yellow = excited (Photo courtesy of MPI for Dynamics and Self-Organization)
Image: Spatial-temporal excitation pattern during cardiac fibrillation on the surface of heart (field of view 6 x 6 cm2). Color code: black = resting, yellow = excited (Photo courtesy of MPI for Dynamics and Self-Organization)

In a healthy heart, electrical impulses spread across the heart muscle in an orderly way, controlling the heart’s contractions: the ventricles and atria contract and relax at regular intervals. However, in the case of cardiac arrhythmia, these electrical pulses may spread chaotically, disrupting the regular heartbeat and impairing proper blood circulation. Atrial fibrillation is the most prevalent type of cardiac arrhythmia, affecting over 10 million individuals in Europe and the US. For those with chronic atrial fibrillation, a common remedy is defibrillation, which involves a strong electric pulse that, although effective, can be painful and potentially harmful to surrounding tissues. Now, researchers have introduced a new low-energy defibrillation method that could stop life-threatening heart fibrillations more gently.

The new technique called LEAP (Low-Energy Anti-fibrillation Pacing) has been developed by an international team of scientists led by the Max-Planck-Institute (MPI, Munich, Germany) and reduces the energy needed for defibrillation by over 80% compared to traditional methods, offering the potential for the pain-free treatment of severe cardiac fibrillation. This method involves delivering a sequence of five mild electrical signals through a cardiac catheter, allowing the heart to resume its normal rhythm within seconds. Unlike conventional defibrillators that excite all cells at once with a strong electric field, LEAP works by briefly halting the ability of heart tissue to transmit electrical signals, effectively resetting the heart's activity.

This innovative approach is similar to rebooting a malfunctioning computer. However, instead of a single reset, LEAP uses low-energy pulses to synchronize the tissue to gradually stop the turbulent electrical activity in the heart which later resumes normal beating. Research involving experiments and simulations has shown that natural heterogeneities within the heart, such as blood vessels and areas of fatty or fibrotic tissue, can act as the origins for synchronizing waves. The findings suggest that LEAP could also be adapted for treating ventricular fibrillation, a more severe arrhythmic event typically managed only with external or implantable defibrillators. For the many patients who rely on implantable cardioverter-defibrillators (ICD), LEAP could potentially enhance treatment efficacy, extend battery life, reduce painful experiences, and decrease the frequency of surgical interventions to replace devices.

"The development of LEAP is a groundbreaking result and an outstanding example of successful interdisciplinary collaboration between physicists and physician-scientists, with immediate impact on the development of novel therapies for life-threatening cardiac arrhythmias," said Markus Zabel from the University Center Göttingen.

Related Links:
Max-Planck-Institute

Gold Member
12-Channel ECG
CM1200B
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Guide Wire
E-wire

Print article

Channels

Surgical Techniques

view channel
Image: Concept of the wirelessly actuated undulating pump and its integration into an esophageal stent (Photo courtesy of Advanced Functional Materials/ doi.org/10.1002/adfm.202405865)

Wirelessly Activated Robotic Device Aids Digestion in Patients with Compromised Organs

The transport of fluids and solids is essential in the human body, driven by a wave-like movement in the lumen known as peristalsis. However, peristalsis can be disrupted in patients who have obstructions... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.