We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




New Low-Energy Defibrillation Method Controls Cardiac Arrhythmias

By HospiMedica International staff writers
Posted on 25 Apr 2024
Print article
Image: Spatial-temporal excitation pattern during cardiac fibrillation on the surface of heart (field of view 6 x 6 cm2). Color code: black = resting, yellow = excited (Photo courtesy of MPI for Dynamics and Self-Organization)
Image: Spatial-temporal excitation pattern during cardiac fibrillation on the surface of heart (field of view 6 x 6 cm2). Color code: black = resting, yellow = excited (Photo courtesy of MPI for Dynamics and Self-Organization)

In a healthy heart, electrical impulses spread across the heart muscle in an orderly way, controlling the heart’s contractions: the ventricles and atria contract and relax at regular intervals. However, in the case of cardiac arrhythmia, these electrical pulses may spread chaotically, disrupting the regular heartbeat and impairing proper blood circulation. Atrial fibrillation is the most prevalent type of cardiac arrhythmia, affecting over 10 million individuals in Europe and the US. For those with chronic atrial fibrillation, a common remedy is defibrillation, which involves a strong electric pulse that, although effective, can be painful and potentially harmful to surrounding tissues. Now, researchers have introduced a new low-energy defibrillation method that could stop life-threatening heart fibrillations more gently.

The new technique called LEAP (Low-Energy Anti-fibrillation Pacing) has been developed by an international team of scientists led by the Max-Planck-Institute (MPI, Munich, Germany) and reduces the energy needed for defibrillation by over 80% compared to traditional methods, offering the potential for the pain-free treatment of severe cardiac fibrillation. This method involves delivering a sequence of five mild electrical signals through a cardiac catheter, allowing the heart to resume its normal rhythm within seconds. Unlike conventional defibrillators that excite all cells at once with a strong electric field, LEAP works by briefly halting the ability of heart tissue to transmit electrical signals, effectively resetting the heart's activity.

This innovative approach is similar to rebooting a malfunctioning computer. However, instead of a single reset, LEAP uses low-energy pulses to synchronize the tissue to gradually stop the turbulent electrical activity in the heart which later resumes normal beating. Research involving experiments and simulations has shown that natural heterogeneities within the heart, such as blood vessels and areas of fatty or fibrotic tissue, can act as the origins for synchronizing waves. The findings suggest that LEAP could also be adapted for treating ventricular fibrillation, a more severe arrhythmic event typically managed only with external or implantable defibrillators. For the many patients who rely on implantable cardioverter-defibrillators (ICD), LEAP could potentially enhance treatment efficacy, extend battery life, reduce painful experiences, and decrease the frequency of surgical interventions to replace devices.

"The development of LEAP is a groundbreaking result and an outstanding example of successful interdisciplinary collaboration between physicists and physician-scientists, with immediate impact on the development of novel therapies for life-threatening cardiac arrhythmias," said Markus Zabel from the University Center Göttingen.

Related Links:
Max-Planck-Institute

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Anesthesia Cart
UMGSA-33369-VIL

Print article

Channels

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.