We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
77 ELEKTRONIKA

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

By HospiMedica International staff writers
Posted on 03 May 2024
Print article
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart rate to glucose levels to microbiome diversity. Despite these advancements, there is still a significant gap in integrating these technologies seamlessly with the human body, especially when it comes to invasive monitoring devices. Now, a breakthrough in research on stretchable sensors could pave the way for developing soft, flexible microneedles, enhancing both comfort and accuracy in long-term health monitoring.

Developed by researchers at the University of Southern California (Los Angeles, CA, USA), this new technology involves stretchable three-dimensional penetrating microelectrode arrays. Traditional microneedle electrodes used for brain sensing, stimulation, and biomarker diagnosis are generally rigid, which limits their application. The new soft microneedle electrodes are specifically designed to be adaptable with muscle and skin tissues that often deform, ensuring continuous contact and minimizing tissue damage. This adaptability is crucial for accurate health monitoring, from assessing bladder function to detecting subtle changes in cardiac rhythms.

This advancement is made possible by a hybrid fabrication method that combines laser micromachining, microfabrication, and transfer printing. This method is both low-cost and scalable, offering unprecedented stretchability in microneedle electrodes—60-90%—the highest ever reported. It also allows for the customization of electrode geometry, recording sites, and the mechanical and electrical properties of the device. An interesting feature of the research is its deep-sea origins, with the technology used to record electrical activity in the moving muscles of a sea slug. This novel platform technology suggests the potential of these microneedle electrodes for broader biomedical applications, including brain and nerve activity monitoring, electrochemical skin sensing, neuromuscular disorder diagnosis, and deep tissue drug delivery.

Related Links:
University of Southern California

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Cardiograph
PageWriter TC10

Print article

Channels

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.