We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI Can Prioritize Emergency Department Patients Requiring Urgent Treatment

By HospiMedica International staff writers
Posted on 13 May 2024
Print article
Image: AI can be as good as a physician at prioritizing which patients need to be seen first (Photo courtesy of 123RF)
Image: AI can be as good as a physician at prioritizing which patients need to be seen first (Photo courtesy of 123RF)

Emergency departments across the world are facing severe overcrowding and excessive demands, but a new study indicates that artificial intelligence (AI) might soon assist in prioritizing patients who require urgent treatment. This research has shown that AI can match the performance of physicians in determining which patients should be seen first.

In this study, researchers at UC San Francisco (San Francisco, CA, USA) utilized anonymized data from 251,000 adult emergency department (ED) visits to test the effectiveness of an AI model. This AI was tasked with extracting and interpreting symptoms from clinical notes to assess the immediacy of patients' treatment needs. The AI's assessments were then compared to the Emergency Severity Index—a 1-5 scale used by ED nurses to triage incoming patients according to the urgency of their conditions. For privacy, the data used were de-identified. The AI technology employed was the ChatGPT-4 large language model (LLM), accessed through UCSF's secure generative AI platform, equipped with extensive privacy measures. To evaluate the AI, researchers used a set of 10,000 matched pairs, totaling 20,000 patients, where each pair consisted of one patient with a severe condition like a stroke and another with a less critical issue such as a broken wrist.

The AI was successful in identifying the more severely ill patient in each pair 89% of the time based solely on symptom data. A focused comparison in a smaller subset of 500 pairs, which also involved physician evaluation, showed the AI's accuracy at 88%, slightly higher than the physician's 86%. Integrating AI into the triage process could potentially alleviate the burden on physicians, allowing them to concentrate on treating the most critical cases and providing a supportive decision-making tool for clinicians handling multiple urgent cases simultaneously. This study stands out as it is among the few that test an LLM with real-world clinical data instead of simulations and is the first to use data from over 1,000 clinical cases and to focus on emergency department visits, where patients present a wide range of medical issues.

“Imagine two patients who need to be transported to the hospital but there is only one ambulance. Or a physician is on call and there are three people paging her at the same time, and she has to determine who to respond to first,” said lead author Christopher Williams. “Upcoming work will address how best to deploy this technology in a clinical setting.”

Related Links:
UC San Francisco

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Pre-Op Planning Solution
Sectra 3D Trauma

Print article

Channels

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.