We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Thermo Fisher Scientific - Direct Effect Media

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Brain Scanning Headband Detects Traumatic Injuries

By HospiMedica International staff writers
Posted on 16 Sep 2015
Print article
Image: The Cerebrotech electromagnetic wave brain injury analyzer (Photo courtesy of Cesar A. Gonzalez, NPI).
Image: The Cerebrotech electromagnetic wave brain injury analyzer (Photo courtesy of Cesar A. Gonzalez, NPI).
A novel noninvasive brain monitor uses radio waves to detect changes in the flow of intracranial fluids.

The Cerebrotech Intracranial Fluids Monitor (ICP) is a real-time volumetric integral phase shift (VIPS) spectroscopy monitor that consists of a headband with multiple integrated antennas that broadcast and receive each other’s signals; the frequency response of the phase angle between a transmitter and receiver antenna represents changes in the electrical properties of tissue resulting from small changes in intracranial fluid flow. A computer algorithm analyzes the changes in the tissue electrical properties, providing a visual readout on a real-time monitor.

The device detects characteristic changes in tissue composition and structure in traumatic brain injury (TBI). Thus, for brain edemas, swelling results from an increase in fluid in the tissue. For brain hematomas, internal bleeding causes blood buildup in certain regions of the brain. In the frequency range of 153–166 MHz, the device can distinguish between brain edema and a hematoma by the changes in electromagnetic tissue properties. The Cerebrotech ICP is a product of Cerebrotech (Pleasanton, CA, USA), and has received the European Community CE marking of approval.

“It has been remarkable to watch this powerful technology unfold, and to see it realizing the potential that we were only imagining just a few years ago,” said Wade Smith, PhD, MD, director of neurovascular services at UCSF medical center (San Francisco, CA, USA), and chairman of the Cerebrotech scientific advisory board. “Cerebrotech’s monitor can give us valuable insight into the progression of edema and bleeding in our patients, and help us manage their care as they recover from stroke and brain trauma.”

“This technology is inexpensive, it can be used in economically disadvantaged parts of the world and in rural areas that lack industrial infrastructure, and it may substantially reduce the cost and change the paradigm of medical diagnostics,” said Prof, Cesar Gonzalez, MD, of Instituto Politécnico Nacional (NPI; Mexico City, Mexico), who developed the technology. “This suggests the potential for the device to be used as an indication for the health of the brain in older patients in a similar way in which measurements of blood pressure, ECG, cholesterol or other health markers are used for diagnostic of human health conditions.”

Related Links:

Cerebrotech
Instituto Politécnico Nacional



Print article

Channels

Surgical Techniques

view channel
Image: Resolute Onyx DES helps address all DES needs and numerous patient anatomies (Photo courtesy of Medtronic)

Medtronic’s Latest Generation Drug-Eluting Coronary Stent System Offers Dual-Layer Balloon Technology

Coronary artery disease (CAD) is one of the leading causes of death and is caused by plaque buildup on the inside of the coronary arteries. These plaque deposits can narrow or clog the inside of the arteries,... Read more

Patient Care

view channel
Image: Future wearable health tech could measure gases released from skin (Photo courtesy of Pexels)

Wearable Health Tech Could Measure Gases Released From Skin to Monitor Metabolic Diseases

Most research on measuring human biomarkers, which are measures of a body’s health, rely on electrical signals to sense the chemicals excreted in sweat. But sensors that rely on perspiration often require... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.