We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Groundbreaking Biomaterial Injected Intravenously Repairs Cells and Tissue Damaged by Heart Attack and TBI

By HospiMedica International staff writers
Posted on 01 Feb 2023
Print article
Image: The new biomaterial heals tissues from the inside out (Photo courtesy of UC San Diego)
Image: The new biomaterial heals tissues from the inside out (Photo courtesy of UC San Diego)

Following a heart attack, there is development of scar tissue, which affects muscle function and can result in congestive heart failure. However, there is still no established treatment available for repairing the damage caused to cardiac tissue after a heart attack. Now, a newly-developed biomaterial that can be injected intravenously reduces inflammation in tissue and encourages cell and tissue repair. Researchers who developed the biomaterial also tested it and proved its effectiveness in treating tissue damage as a result of heart attacks in rodent as well as large animal models. They also provided proof of concept in a rodent model that the biomaterial may benefit patients with traumatic brain injury and pulmonary arterial hypertension.

In previous studies, a team of bioengineers and physicians at the University of California San Diego (La Jolla, CA, USA) had developed a hydrogel from the natural scaffolding of cardiac muscle tissue, also known as the extracellular matrix (ECM). This gel can be injected into damaged heart muscle tissue using a catheter and forms a scaffold in the damaged areas, promoting new cell growth and repair. The researchers had reported successful results from a phase 1 human clinical trial although the gel can only be used a week or more after a heart attack as it has to be injected directly into the heart muscle – risking damage caused by the needle-based injection procedure. This time, the team set out to develop a treatment that could be administered immediately after a heart attack. For this purpose, the team developed a biomaterial that could be infused into a blood vessel in the heart at the same time when other treatments such as angioplasty or a stent were being administered, or injected intravenously.

The researchers began with the hydrogel they had developed, which had proved to be compatible with blood injections in safety trials. However, the particle size in the hydrogel was too large to target leaky blood vessels. The researchers resolved this issue by putting the liquid precursor of the hydrogel through a centrifuge, enabling them to sift out bigger particles and retain only nano-sized particles. The resultant material was made to go through dialysis and sterile filtering before being freeze dried. After the addition of sterile water to the final powder, a biomaterial is obtained that can be injected intravenously or infused into a coronary artery in the heart. The new biomaterial offers the advantage of even distribution throughout the damaged tissue, as it is infused or injected intravenously. In contrast, hydrogel injected using a catheter stays in specific locations and does not spread out.

The researchers went on to test the biomaterial on a rodent model of heart attacks. The material was expected to pass through the blood vessels and into the tissue due to the development of gaps between endothelial cells in blood vessels after a heart attack. However, the researchers found that the biomaterial instead bound to those cells, closing the gaps and accelerating healing of the blood vessels, as a result of which inflammation was reduced. Testing the biomaterial in a porcine model of heart attack generated similar results. The team also successfully tested the hypothesis that the biomaterial could help treat other types of inflammation in rat models of traumatic brain injury and pulmonary arterial hypertension. The researchers will now undertake preclinical studies for these conditions with a study on the safety and efficacy of the biomaterial in human subjects expected to begin within one to two years.

“This biomaterial allows for treating damaged tissue from the inside out,” said Karen Christman, a professor of bioengineering at the University of California San Diego, and the lead researcher on the team that developed the material. “It’s a new approach to regenerative engineering.”

“We sought to design a biomaterial therapy that could be delivered to difficult-to-access organs and tissues, and we came up with the method to take advantage of the bloodstream - the vessels that already supply blood to these organs and tissues,” said Martin Spang, the paper’s first author. “While the majority of work in this study involved the heart, the possibilities of treating other difficult-to-access organs and tissues can open up the field of biomaterials/tissue engineering into treating new diseases.”

Related Links:
University of California San Diego

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Ultra Low Floor Level Bed
Solite Pro

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.