We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

Interscatter Communication Helps Implanted Devices Exchange Data

By HospiMedica International staff writers
Posted on 07 Sep 2016
Print article
Image: Bluetooth signals from a smartwatch transmit a signal to a neural implant reflected to a smartphone via Interscatter Wi-FI (Photo courtesy of Mark Stone/UW).
Image: Bluetooth signals from a smartwatch transmit a signal to a neural implant reflected to a smartphone via Interscatter Wi-FI (Photo courtesy of Mark Stone/UW).
A new study describes how small devices such as brain implants, contact lenses, and wearables can talk to other devices like smartphones by using Bluetooth signals that convert into Wi-Fi transmissions.

Developed by researchers at the University of Washington (UW; Seattle, USA), “interscatter communication” is a technology that creates Wi-Fi signals by using Bluetooth transmissions from nearby mobile devices, such as smartphones or laptops. An example of the process is a smart contact lens and a smartwatch. The watch sends a blank Bluetooth signal to the lens’s antenna, which it receives as a single tone signal that can be manipulated. Using backscattering, the lens can then encode data into a standard Wi-Fi transmission.

The mobile device thus serves as both source and receiver for the reflected signals, enabling inter-technology communication. The system requires no specialized equipment, relying solely on mobile devices commonly found with users to generate the Wi-Fi signals, using 10,000 times less energy than conventional methods. The new technique was presented at the annual conference of the Association for Computing Machinery’s Special Interest Group on Data Communication (SIGCOMM 2016), held during August 2016 in Florianópolis (Brazil).

“Wireless connectivity for implanted devices can transform how we manage chronic diseases,” said study co-author Vikram Iyer, a UW electrical engineering doctoral student. “For example, a contact lens could monitor a diabetic’s blood sugar level in tears and send notifications to the phone when the blood sugar level goes down.”

“Preserving battery life is very important in implanted medical devices, since replacing the battery in a pacemaker or brain stimulator requires surgery and puts patients at potential risk from those complications,” said study co-author Joshua Smith, PhD, an associate professor of electrical engineering and of computer science and engineering. “Interscatter can enable Wi-Fi for these implanted devices while consuming only tens of microwatts of power.”

Beyond applications in implanted medical devices, the researchers show that their technology can be applied for other uses, such as in credit cards that can communicate with each other by reflecting Bluetooth signals coming from a smartphone. This opens up possibilities for smart credit cards that can communicate directly with other cards, enable applications where users can split the bill by just tapping their credit cards together.

Related Links:
University of Washington

Gold Supplier
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
X-Ray Image Acquisition Software
dicomPACS DX-R
Endoscopy Display
EndoVue Plus 24”
Surgical Light
HyLED 600 Series

Print article



view channel
Image: MyoVista Wavelet technology utilizes AI for early detection of heart disease (Photo courtesy of Heart Test Laboratories)

Novel ECG Technology Utilizes AI for Early Detection of Heart Disease

Cardiovascular disease is responsible for 17.9 million deaths every year, or about 32% of all deaths worldwide. Every week, millions of electrocardiographs (ECGs) are performed across the world, making... Read more

Critical Care

view channel
Image: Studies have shown the Autus Valve maintains control of blood flow as it expands (Photo courtesy of Boston Children’s Hospital)

Heart Valve That Grows Along With Child Could Reduce Invasive Surgeries

In children with congenital pulmonary valve disease, the flow of blood between the heart and lungs is impeded. In cases where the pulmonary valves have narrowed or are leaking and cannot be treated effectively... Read more

Surgical Techniques

view channel
Image: The Vena BDAC provides a superior solution to distal navigation (Photo courtesy of Vena Medical)

Category-Defining Balloon Distal Access Catheter Allows Surgeons to Get Much Closer to Blood Clots

Thrombectomy is a minimally invasive procedure for removing a blood clot and has now become standard of care treatment for patients with an acute ischemic stroke (AIS) secondary to a Large Vessel Occlusion (LVO).... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more


view channel
Image: The global patient positioning systems market is projected to reach USD 1.7 billion by 2027 (Photo courtesy of Pexels)

Global Patient Positioning Systems Market Driven by Increasing Chronic Diseases

The global patient positioning systems market is projected to grow at a CAGR of 4% from USD 1.4 billion in 2022 to USD 1.7 billion by 2027, driven by increasing technological advancements in medical devices,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.