We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Origami-Inspired Stretchable Strain Sensors to Find Application in Wearables and Implantables

By HospiMedica International staff writers
Posted on 05 Sep 2023
Print article
Image: The new origami-inspired sensors could be used in wearables and soft robotics (Photo courtesy of USC)
Image: The new origami-inspired sensors could be used in wearables and soft robotics (Photo courtesy of USC)

Existing stretchable strain sensors often rely on soft materials like rubber. However, these materials can undergo irreversible changes in their properties with repeated use, leading to unreliable deformation measurements. The challenge is to develop sensors that can stretch significantly, respond rapidly, and provide accurate readings even when dealing with substantial and dynamic deformations. In response, researchers have turned to an origami-inspired solution to create novel sensors that could potentially find applications in detecting organ deformations, wearables, and soft robotics.

Researchers at the University of Southern California (USC, Los Angeles, CA, USA) have introduced a new structure for the sensors after drawing inspiration from origami. Their innovative design allows the folding of more rigid materials with electrodes on both sides of the panel (imagine the sensor as an open book with electrodes on the front and back covers). As the electrodes unfold, they measure the strength of the electrical field between them. The team has developed a model that translates this measurement into a value that captures the extent of the deformation. These sensors can be attached to moving soft structures—ranging from the mechanical tendons of prosthetic limbs to the pulsating tissues of human internal organs—to monitor shape changes and proper function without the need for cameras.

The newly devised sensors can stretch up to three times their original size while maintaining high sensing accuracy even after repeated usage. Moreover, these sensors exhibit rapid responsiveness, detecting deformations in less than 22 milliseconds within very small areas (about 5 square millimeters). Furthermore, they can identify strains from various directions. Due to their capacity to precisely measure extensive, intricate, and fast deformations, these sensors offer numerous possibilities for practical implementation in wearable electronics, prosthetics, and robotics. They can find applications in tracking the movements of soft robots, monitoring human joint motions, or even observing organs such as the bladder to identify abnormalities indicative of disease. While initially designed for controlling soft robotics—ranging from delicate robotic grippers to snake-like surveillance devices—these sensors are also suitable for innovations in biomedicine.

“We can apply these sensors as wearable or implantable biomedical devices for healthcare monitoring,” explained Hangbo Zhao who led the research group. “For example, tracking the movement and flexibility of our skin or our joints. There’s also high demand for developing implantable sensors that can continuously monitor the functional status of internal organs that undergo cyclic expansion and contraction.”

Related Links:
University of Southern California 

Print article


Surgical Techniques

view channel
Image: The PtNGrid features thin, flexible and densely packed grids of either 1,024 or 2,048 embedded ECoG sensors (Photo courtesy of David Baillot/UC San Diego Jacobs School of Engineering)

Electronic Grid Records Brain Activity during Surgery to Minimize Damage to Healthy Tissue

A new electronic grid equipped with nanoscale sensors that records electrical signals from the human brain with unprecedented detail could enhance surgical planning and execution for removing brain tumors... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.