We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Radcal

Download Mobile App




Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

By HospiMedica International staff writers
Posted on 16 May 2024
Print article
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately result in death. It is a progressive disease, making it crucial for healthcare providers to identify patients at high risk of worsening outcomes. Now, researchers have introduced a potent new risk assessment tool designed to predict the prognosis of patients with heart failure. This tool marks an advancement over previous methods by utilizing machine learning (ML) and artificial intelligence (AI) to assess individual risks of developing serious complications associated with heart failure.

This innovative model was developed by researchers at the University of Virginia Health System (Charlottesville, VA, USA), using anonymized data from thousands of patients who participated in heart failure clinical trials previously sponsored by the National Institutes of Health’s National Heart, Lung, and Blood Institute. When evaluated, the model proved more effective than existing predictors in forecasting outcomes for a wide range of patients, including the likelihood of requiring heart surgery or a transplant, the risk of rehospitalization, and the risk of mortality. The success of the model is attributed to the integration of ML/AI technologies and the inclusion of hemodynamic clinical data, which detail how blood moves through the heart, lungs, and other parts of the body. By applying this model, doctors can tailor treatment more precisely to each patient's needs, potentially extending and improving the quality of their lives, according to the researchers.

“Heart failure is a progressive condition that affects not only quality of life but quantity as well. All heart failure patients are not the same. Each patient is on a spectrum along the continuum of risk of suffering adverse outcomes,” said researcher Sula Mazimba, MD, a heart failure expert. “Identifying the degree of risk for each patient promises to help clinicians tailor therapies to improve outcomes.”

“This model presents a breakthrough because it ingests complex sets of data and can make decisions even among missing and conflicting factors,” added researcher Josephine Lamp, of the University of Virginia School of Engineering’s Department of Computer Science. “It is really exciting because the model intelligently presents and summarizes risk factors reducing decision burden so clinicians can quickly make treatment decisions.”

Related Links:
UVA Health

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
ICU Bed with Integrated Mattress
Activ8 Vivo

Print article

Channels

Surgical Techniques

view channel
Image: Concept of the wirelessly actuated undulating pump and its integration into an esophageal stent (Photo courtesy of Advanced Functional Materials/ doi.org/10.1002/adfm.202405865)

Wirelessly Activated Robotic Device Aids Digestion in Patients with Compromised Organs

The transport of fluids and solids is essential in the human body, driven by a wave-like movement in the lumen known as peristalsis. However, peristalsis can be disrupted in patients who have obstructions... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.