We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Protected Droplets Could Revolutionize Methods of Targeting Medicines to Specific Body Locations

By HospiMedica International staff writers
Posted on 08 Dec 2023
Print article
Image: An oil droplet (yellow) stabilized by temperature-sensitive microgels (green) in water (blue) (Photo courtesy of Marcel Rey)
Image: An oil droplet (yellow) stabilized by temperature-sensitive microgels (green) in water (blue) (Photo courtesy of Marcel Rey)

Emulsions are mixtures consisting of droplets suspended in a liquid where they don’t dissolve or mix. A common example is milk, where fat droplets, stabilized by milk proteins, are dispersed in water. In fields like medicine delivery, it's vital not only to preserve the structure of these droplets but also to control their dissolution. This is critical because active ingredients encapsulated within the droplets should be released only after the medicine enters the body. Researchers have now developed a method for creating responsive emulsions that allows for precise control over the dissolution of these droplets. This innovation has the potential to transform how medicines are targeted within the body.

The research, conducted by the University of Gothenburg (Gothenburg, Sweden), focuses on microgels that encase a droplet and protect it until a specific temperature threshold is reached. These microgels form a protective shell around a droplet, which remains intact until the temperature exceeds 32 degrees Celsius. At this point, the microgels contract, leading to the dissolution of the droplet in the surrounding liquid. This temperature-triggered behavior of the droplets, long recognized in scientific studies, has now been explained by the Gothenburg research team. They discovered that the fundamental mechanism behind these stimuli-responsive emulsions is the morphological changes in the stabilizing microgels.

The team found that the dual nature of the microgels, as both particles and polymers, is essential for the stability and responsiveness of the emulsion. The particle aspect contributes to the emulsion's stability, while the polymer aspect allows the microgels to respond to external stimuli, leading to the droplets’ dissolution. Creating temperature-sensitive emulsions requires a balance: minimal particle character for stability and significant polymer character for the prompt and effective dissolution of the droplets. The researchers are now focusing on developing microgel-stabilized emulsions that react to the pH level of the surrounding fluid. This research is particularly significant for pharmaceuticals, where the aim is to concentrate medication delivery to specific diseased areas within the body, minimizing overall body impact.

“Responsive emulsions hold great potential as a precise tool for delivering medicine to specific areas in the body. Although additional research is needed, the future looks promising, and advancements can be expected over the next 10 years,” said Marcel Rey, a researcher in Physics at the University of Gothenburg and lead author of the study.

Related Links:
University of Gothenburg

Gold Member
Solid State Kv/Dose Multi-Sensor
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
Digital ECG Machine
ECG – 11D

Print article


Surgical Techniques

view channel
Image: New studies have highlighted the benefits of robotic-assisted joint replacement surgery (Photo courtesy of HSS)

Robotic-Assisted Joint Replacement Surgery Improves Patient Outcomes

Robotics is being increasingly integrated into joint replacement surgeries, although more research is required to understand its benefits. Now, researchers from Hospital for Special Surgery (HSS, New York,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.