We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Stryker Worldwide

evelops medical products and technologies, including Implants (joint replacement), Trauma, Craniomaxillofacial, Spina... read more Featured Products: More products

Download Mobile App




Expansion System Stabilizes and Restores Vertebral Body

By HospiMedica International staff writers
Posted on 08 Oct 2018
Print article
Image: A surgical implant resembling a car jack restores VCFs (Photo courtesy of Stryker).
Image: A surgical implant resembling a car jack restores VCFs (Photo courtesy of Stryker).
A novel spinal implant provides a fully controlled and comprehensive solution for the reduction of painful osteoporotic vertebral compression fractures (VCFs).

The Stryker (Kalamazoo, MI, USA) SpineJack implantable fracture reduction system is based on a modifiable titanium expander designed to realize the biomechnical restoration of a VCF by simultaneously restoring sagittal and coronal balance, coronal angulation, and endplate restoration. The procedure involves placement using a percutaneous transpedicular approach with fluoroscopic guidance, followed by a controlled anatomical cranio-caudal expansion that preserves the surrounding bone trabeculae.

During expansion, a 500-Newton distraction force is applied along the cranio-caudal axis, similar to a car jack. Device expansion is achieved using a specific tool that pulls the two ends of the implant towards each other, shortening the device and deploying the central titanium component. A rack-and-pinion system blocks the expansion of the implant at the desired height, preventing loss of correction before low-pressure injection of polymethylmethacrylate (PMMA) bone cement, which envelops the implants, ensuring definitive stabilization of the fracture.

By optimizing biomaterial positioning and interdigitation, the Spinejack system provides controlled uni-directional cranio-caudal expansion to restore sagittal and coronal balance; adaptation of the implant’s expansion to restore coronal angulation, and adaptation of implant positioning for endplate restoration. The SpineJack implantable fracture reduction system is available in three sizes (5.8, 5, and 4.2 mm), and includes three dimensional (3D) mapping software that uses computerized tomography (CT) scans to evaluate the anatomical restoration.

Non-operative treatment of VCF is often poorly tolerated, and surgical options include percutaneous vertebroplasty and kyphoplasty. Vertebroplasty is associated with higher rates of procedure-related complications and cement leakage, while kyphoplasty can result in significant loss of restored vertebral height after balloon deflation. The Spinejack system, developed originally by Vexim (Toulouse, France), which was recently acquired by Stryker, has been shown to overcome both problems and provide superior clinical results.

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
High Power Laser System
Dornier Thulio

Print article

Channels

Critical Care

view channel
Image: Researchers have developed a novel risk score for cardiovascular complications after bone marrow transplant (Photo courtesy of 123RF)

Novel Tool Predicts Cardiovascular Risks after Bone Marrow Transplantation

Every year, thousands of people undergo bone marrow transplants to potentially cure serious diseases like leukemia, lymphoma, and immune deficiency disorders. While these transplants can be lifesaving,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.