We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
77 ELEKTRONIKA

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Tiny Robots Made Out Of Carbon Could Conduct Colonoscopy, Pelvic Exam or Blood Test

By HospiMedica International staff writers
Posted on 17 May 2024
Print article
Image: Carbon-based tiny robots could swim through a person’s bloodstream to attack a tumor (Photo courtesy of Advanced Materials, DOI:10.1002/adma.202304517)
Image: Carbon-based tiny robots could swim through a person’s bloodstream to attack a tumor (Photo courtesy of Advanced Materials, DOI:10.1002/adma.202304517)

Researchers at the University of Alberta (Edmonton, AB, Canada) are developing cutting-edge robots so tiny that they are invisible to the naked eye but are capable of traveling through the human body to remove blood clots in the brain. These tiny robots, or "actuators," are designed to swim through the bloodstream to target and destroy tumors, disintegrating harmlessly after their task is accomplished.

These microrobots are engineered to detect a specific chemical emitted by a brain tumor and navigate toward it to encapsulate the tumor and halt its growth. To make this possible, a collaborative effort between engineers and medical experts at the University of Alberta is underway to develop biocompatible materials. The team has successfully demonstrated the construction of such actuators using carbon nanotubes. These nanotubes, each only five nanometres thick—10,000 times thinner than a strand of human hair—are placed on a silicon wafer. The entire assembly can measure as little as five microns, which is about one-twentieth the diameter of a human hair. These actuators are activated by an electric charge that causes them to move in specific ways, such as bending or opening and closing, to perform precise tasks.

For instance, sending an electric signal triggers an electrochemical reaction at the surface of the micro-actuator, causing it to swell—a mechanism used to open and close its end. Although still in the early stages of development, this technology might enable the micro-actuator to bend and eventually walk or swim. In the future, these microrobots could be used non-invasively for medical procedures like colonoscopies, pelvic exams, or blood tests. Additionally, the team is investigating the integration of nano-scale computer chips into these actuators and is also developing tiny batteries that provide just enough power for a single task.

“If they had processors onboard, that would be a game changer,” said Mahdi Hamidi, a professor in the Department of Mechanical Engineering at the University of Alberta who is working on the next-generation robots. “The microrobot could be connected to the internet, and you could perhaps change the program during its mission.”

Related Links:
University of Alberta

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
FHD Surgical Imaging System
SV-M2K30

Print article

Channels

Critical Care

view channel
Image: Peerbridge Cor is a 3-lead, 2-channel wireless AECG that simplifies the testing and diagnostic process (Photo courtesy of Peerbridge Health)

First-of-its-Kind Trial to Measure Ejection Fraction Severity Directly from AI-Enabled Remote ECG Wearable

Echocardiograms are a standard diagnostic tool to measure ejection fraction but require a clinical setting for administration. This can pose challenges such as scheduling delays, staffing shortages, accessibility... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.