We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

3-D Printed Ribcage Promotes Sternocostal Reconstruction

By HospiMedica International staff writers
Posted on 21 Sep 2015
Print article
Image: The 3D printed titanium sternum and ribs (Photo courtesy of CSIRO).
Image: The 3D printed titanium sternum and ribs (Photo courtesy of CSIRO).
A new study describes how a custom-made three-dimensional (3-D) titanium-printed prosthesis was used to reconstruct a chest wall.

The procedure performed by surgeons at Salamanca University Hospital (Spain) was undertaken in a 54-year-old Spanish male diagnosed with a chest wall sarcoma. After the surgical team made the decision to remove the sternum and a portion of the rib cage, they searched for a sternal reconstruction implant that would not only guarantee preservation of respiratory mechanics, but also provide adequate mediastinal protection and acceptable cosmetic results. To do so, they approached Anatomics (Melbourne, Australia).

Using high resolution computerized tomography (CT) data, Anatomics was able to create a 3-D reconstruction of the chest wall and tumor, allowing the surgeons to plan and accurately define resection margins. They then manufactured the reconstruction implant out of surgical grade titanium alloy using laser sintering printing techniques at the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO, Melbourne, Australia) 3-D printing facility, known as Lab 22.

The 3-D printed implant that was fabricated consists of a rigid sternal core and semi-flexible titanium rods that act as prosthetic ribs attached to the sternum. During the resection, the surgeons used an intraoperative template to set resection margins so that the implant could be precisely placed. They also used a new and safer rib fixation system to connect the implant to the remaining sections of the ribcage. The design methodology and surgical procedure were described in a study published on August 4, 2015, in the European Journal of Cardio-Thoracic Surgery.

“We thought maybe we could create a new type of implant that we could fully customize to replicate the intricate structures of the sternum and ribs. We wanted to provide a safer option for our patient, and improve their recovery post-surgery,” said lead surgeon José Aranda, MD. “The operation was very successful; thanks to 3-D printing technology and a unique resection template, we were able to create a body part that was fully customized and fitted like a glove.”

“We wanted to 3-D print the implant from titanium because of its complex geometry and design. While titanium implants have previously been used in chest surgery, designs have not considered the issues surrounding long term fixation,” said Andrew Batty, CEO of Anatomics. “Flat and plate implants rely on screws for rigid fixation that may come loose over time. This can increase the risk of complications and the possibility of reoperation.”

“We built the implant using our AUD 1.3 million Arcam printer. The printer works by directing an electron beam at a bed of titanium powder in order to melt it. This process is then repeated, building the product up layer-by-layer until you have a complete implant,” concluded Alex Kingsbury, of the CSIRO manufacturing team. “3D printing has significant advantages over traditional manufacturing methods, particularly for biomedical applications. As well as being customizable, it also allows for rapid prototyping, which can make a big difference if a patient is waiting for surgery.”

Related Links:

Salamanca University Hospital
Anatomics
Australian Commonwealth Scientific and Industrial Research Organization (CSIRO)


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
EMG Software
Natus Elite

Print article

Channels

Critical Care

view channel
Image: Peerbridge Cor is a 3-lead, 2-channel wireless AECG that simplifies the testing and diagnostic process (Photo courtesy of Peerbridge Health)

First-of-its-Kind Trial to Measure Ejection Fraction Severity Directly from AI-Enabled Remote ECG Wearable

Echocardiograms are a standard diagnostic tool to measure ejection fraction but require a clinical setting for administration. This can pose challenges such as scheduling delays, staffing shortages, accessibility... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.