We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

Autofluorescent Bandage Detects Pathogenic Bacteria

By HospiMedica International staff writers
Posted on 04 Apr 2016
Print article
Image: The prototype of the ‘smart’ wound dressing: not infected (L), infected (R) (Photo courtesy of the University of Bath).
Image: The prototype of the ‘smart’ wound dressing: not infected (L), infected (R) (Photo courtesy of the University of Bath).
An intelligent hydrogel wound dressing glows green when it detects the presence of harmful bacteria in wound biofilms, potentially reducing the use of antibiotics.

Developed by researchers at the University of Bath (United Kingdom), the University of Brighton (United Kingdom), and other institutions, the prototype wound dressing combines tiny vesicles containing a fluorescent dye mixed with agarose, which are then dispersed within a hydrogel matrix. When toxic bacteria come in contact with the vesicles within the hydrated agarose film, a reaction occurs that releases a dye that fluoresces, alerting attending healthcare professionals that the wound is infected.

The researchers tested the dressing in both static and dynamic models of wound biofilms, using clinical strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis, which were used to establish a biofilm on a nanoporous polycarbonate membrane for periods of 24, 48, and 72 hours. The results indicated a clear fluorescent response within four hours, which was only observed when in contact with biofilms produced by a pathogenic strain. Similar responses were demonstrated on an ex-vivo porcine skin model of burn wound infection.

The sensitivity of the dressing to biofilms was dependent on the species and strain types of the bacterial pathogens involved, but a relatively higher response was observed in strains considered good biofilm formers. The researchers also found a clear difference in the levels of response when the dressings were tested on bacteria grown in biofilm or in planktonic cultures, suggesting that the level of expression of virulence factors is different depending of the growth mode. The study describing to prototype dressing was published in the February 2016 issue of ACS Applied Materials & Interfaces.

“The nanocapsules mimic skin cells in that they only break open when toxic bacteria are present; they aren’t affected by the harmless bacteria that normally live on healthy skin,” said senior author biophysical chemist Toby Jenkins, PhD, of the University of Brighton. “Using this dressing will allow clinicians to quickly identify infections without removing it, meaning that patients can be diagnosed and treated faster. It could really help to save lives.”

Related Links:

University of Bath
University of Brighton

Gold Supplier
SBRT Phantom with Removable Spine
E2E SBRT Phantom with Removable Spine Model 036S-CVXX-xx
Ceiling-Mounted Digital X-Ray System
DigitalDiagnost C50
Smart nCPAP Device
Surgical Table

Print article



view channel
Image: A novel research study moves the needle on predicting coronary artery disease (Photo courtesy of Pexels)

AI-Enabled ECG Analysis Predicts Heart Attack Risk Nearly as well as CT Scans

Increased coronary artery calcium is a marker of coronary artery disease that can lead to a heart attack. Traditionally, CT scans are used to diagnose buildup of coronary artery calcium, although CT scanners... Read more

Surgical Techniques

view channel
Image: Gut microbiota helps healing in colorectal cancer surgery (Photo courtesy of CRCHUM)

Modifying Intestinal Flora Before Surgery Reduces Postoperative Complications in Colorectal Cancer Patients

Up to 30% of all patients undergoing colorectal surgery suffer from serious complications due to poor healing of their intestinal barrier. Anastomotic complications cause inflammation, serious infection... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more


view channel
Image: The global patient positioning systems market is projected to reach USD 1.7 billion by 2027 (Photo courtesy of Pexels)

Global Patient Positioning Systems Market Driven by Increasing Chronic Diseases

The global patient positioning systems market is projected to grow at a CAGR of 4% from USD 1.4 billion in 2022 to USD 1.7 billion by 2027, driven by increasing technological advancements in medical devices,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.