We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




New Research Provides Insights into Underlying Neural Mechanism Driving Brain Changes in Macular Degeneration

By HospiMedica International staff writers
Posted on 02 Apr 2009
In macular degeneration (MD), the most common form of adult blindness, patients progressively lose vision in the center of their visual field, thereby depriving the corresponding part of the visual cortex of input. More...
Previously, researchers discovered that the deprived neurons begin responding to visual input from another spot on the retina --evidence of plasticity in the adult cortex. Just how such plasticity occurred was unknown, but a new study sheds light on the underlying neural mechanism.

"This study shows us one way that the brain changes when its inputs change. Neurons seem to 'want' to receive input: when their usual input disappears, they start responding to the next best thing," said Dr. Nancy Kanwisher, from the McGovern Institute for Brain Research at Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) and senior author of the study appearing in the March 4,2009, issue of the Journal of Neuroscience. "Our study shows that the changes we see in neural response in people with MD are probably driven by the lack of input to a population of neurons, not by a change in visual information processing strategy," said Dr. Kanwisher, a professor of cognitive neuroscience in MIT's department of brain and cognitive sciences.

Macular degeneration affects 1.75 million individuals in the United States alone. Loss of vision begins in the fovea of the retina--the central area providing high acuity vision that we use for reading and other visually demanding tasks. Patients typically compensate by using an adjacent patch of undamaged retina. This preferred retinal locus (PRL) is often below the blind region in the visual field, leading patients to roll their eyes upward to look at someone's face, for example.

The visual cortex has a map of the visual field on the retina, and in macular degeneration the neurons mapping to the fovea no longer receive input. But several labs, including Dr. Kanwisher's, previously found that the neurons in the visual cortex that once responded only to input from central vision begin responding to stimuli at the PRL. In other words, the visual map has reorganized.

"We wanted to know if the chronic, prior use of the PRL causes the cortical change that we had observed in the past, according to what we call the use-dependent hypothesis," said first author Dr. Daniel D. Dilks, a postdoctoral fellow in the Kanwisher lab. "Or, do the deprived neurons respond to stimulation at any peripheral location, regardless of prior visual behavior, according to the use-independent hypothesis?"

Earlier studies could not answer this question because they had only tested patients' PRL. This new study tests both the PRL and another peripheral location, using functional magnetic resonance imaging (fMRI) to scan two macular degeneration patients who had no central vision, and consequently had a deprived central visual cortex.

Because patients routinely use the PRL like a new fovea, it could be that the deprived cortex might respond preferentially to this location. But that is not what the researchers discovered. Instead, the deprived region responded equally to stimuli at both the preferred and nonpreferred locations.

This finding suggests that the long-term change in visual behavior is not driving the brain's remapping. Instead, the brain changes appear to be a relatively passive response to visual deprivation. "Macular degeneration is a great opportunity to learn more about plasticity in the adult cortex," Dr. Kanwisher said. If scientists could one day develop technologies to replace the lost light-sensitive cells in the fovea, patients might be able to recover central vision since the neurons there are still alive and well.

Related Links:

Massachusetts Institute of Technology




Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Silver Member
X-Ray QA Device
Accu-Gold+ Touch Pro
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The use of NIR light beyond light therapy enables simultaneous wireless power transfer and communication to electronic IMDs (Photo courtesy of University of Oulu)

NIR Light Enables Powering and Communicating with Implantable Medical Devices

Implantable medical devices rely on wireless communication and long-lasting power sources to function safely inside the body, yet existing radio-based methods raise concerns around security, interference,... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.