We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
19 Jan 2023 - 21 Jan 2023

Personalized Treatment of Acute Stroke

By HospiMedica International staff writers
Posted on 09 Jun 2022
Print article
Image: 3D micro-CT image of a 1.5 millimeters wide blood clot (Photo courtesy of Empa)
Image: 3D micro-CT image of a 1.5 millimeters wide blood clot (Photo courtesy of Empa)

A blood clot in the brain that blocks the supply of oxygen can cause an acute stroke. When a clot occludes a blood vessel, the oxygen supply to the brain is interrupted, and the affected person suffers an acute cerebral stroke. The time span until the vascular blockage is resolved must be as short as possible in order to save as many nerve cells as possible from dying and prevent permanent neurological damage. However, which treatment is best suited for this purpose is not always easy to determine in the required rush. Now, researchers are developing a method based on X-ray analysis and electron microscopy that should enable the optimal therapy to be identified in the shortest possible time.

In a collaborative research that includes investigators from Empa (Switzerland), the researchers are currently developing a diagnostic procedure that can be used to start a tailored therapy for acute stroke patients in a timely manner. Identifying the optimal treatment for acute stroke is difficult because not all blood clots are the same; depending on the type, different types of cells can clump together. Depending on whether red or white blood cells predominate, or on the proportion of fibrin fibers, the thrombus has completely different properties. In addition, thrombi differ greatly in shape. A 15-millimeter-long thrombus that does not completely fill a blood vessel has different mechanical properties than a clot that is only a few millimeters short but completely blocks a vessel and the blood supply to the brain areas behind it. The optimal treatment depends on these differences, whether it is dissolving the clot with drugs or using a so-called stent retriever, a kind of tiny fishing rod with which the thrombus in the blood vessel can be "fished out" and whose material can be selected differently depending on the thrombus.

Radiology currently relies on conventional computed tomography scans to make the therapeutic decision. However, images of the patient's head provide little information about the details of a clot because objects made of similar materials are too difficult to distinguish from one another and to resolve spatially. Moreover, in everyday clinical practice the resolution of the images is limited to 200 micrometers. This is different with laboratory methods, which the researchers used for their new study. The team had examined various blood clots taken from patients during neurosurgical procedures. For this purpose, different laboratory technologies were combined, resulting in virtual 3D images that revealed detailed and previously unknown properties of blood clots. The researchers used 3D micro-tomography to examine individual red blood cells down to the micrometer-range. Such tomography using phase-contrast techniques produces stronger contrast. Objects that are easy to penetrate such as muscles, connective tissue or blood clots can thus, be visualized in particularly fine nuances and in their spatial spread.

Other technologies such as scanning electron microscopy and X-ray diffraction and scattering methods provided additional information down to atomic levels. Here it was shown for the first time that a thrombus not only consists of blood cells and fibrin networks, but can even be interspersed with minerals such as hydroxyapatite, as is known from vessel walls in arterial calcification. However, this detailed information on the peculiarities of a blood clot comes too late, when the thrombus has already been surgically removed. In addition, the newly acquired data cannot be compared with the conventional images and findings in the hospital. Digitalization in medicine, meanwhile, allows the data to be modeled in such a way that an algorithm could read out the detailed information in the future. Eventually, the researchers hope that due to their findings conventional hospital images might be interpreted in a very short time - just as if the blood clot had been examined in an ultrafast virtual laboratory. This would pave the way for a more accurate and personalized therapy for stroke patients in a timely manner.

Related Links:
Empa 

BMP Whole Blood Analyzer: GEM Premier ChemSTAT
New
Gold Supplier
4K Ultra HD Fluorescence Endoscopic System
FloNavi 214K Series 4K Ultra HD Fluorescence Endoscopic System
New
Neonatal Transilluminator
Ibis Infant Vein Viewer
New
Automated External Defibrillator
Samaritan PAD 500P

Print article

Channels

AI

view channel
Image: EchoGo Heart Failure is the first and only AI-enabled HFpEF detection platform for echocardiography (Photo courtesy of Ultromics)

AI Solution for Echocardiography to Revolutionize Diagnosis of Heart Failure with Preserved Ejection Fraction

Heart failure with preserved ejection fraction (HFpEF) is a type of heart failure often associated with co-morbidities and tends to be caused by increased pressure within the chambers of the heart.... Read more

Surgical Techniques

view channel
Image: ActivSight Intelligent Light has received CE Mark approval (Photo courtesy of Activ Surgical)

Enhanced Imaging System to Become a Game-Changer in the OR by Revolutionizing Surgical Vision

Critical structure identification and tissue perfusion assessment are essential for patients to have the best possible chance of healing well without facing life-threatening or costly complications.... Read more

Patient Care

view channel
Image: Automated cleaning system allows endoscopes to be cleaned direct from clinic (Photo courtesy of Aston University)

World’s First Automated Endoscope Cleaner Fights Antimicrobial Resistance

Endoscopes are long, thin tubes with a light and camera at one end. Due to the sensitivity of the materials and electronics they cannot be sterilized in an autoclave (a machine that uses steam under pressure),... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: The global multiparameter patient monitoring systems market is expected to surpass USD 15 billion by 2028 (Photo courtesy of Unsplash)

Global Multiparameter Patient Monitoring Systems Market Driven by Rising Chronic Illnesses

Multi-parameter patient monitoring equipment is used to assess the vital signs of patients who are suffering from a serious illness. These devices are meant to give the number of data sets on one screen... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.