We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

Drug-Device Combination Could Help Treat Stroke

By HospiMedica International staff writers
Posted on 18 Nov 2015
Print article
Image: TEB combine with SA-NT therapy dissolves blood clots (Photo courtesy of Wyss Institute for Biologically Inspired Engineering).
Image: TEB combine with SA-NT therapy dissolves blood clots (Photo courtesy of Wyss Institute for Biologically Inspired Engineering).
A novel therapeutic approach combines a temporary endovascular bypass (TEB) with clot-busting nanoparticles to restore blood flow to obstructed vessels.

Developed by researchers at the Wyss Institute for Biologically Inspired Engineering (Boston, MA, USA), the New England Center for Stroke Research (NECSTR; Worcester, MA, USA) and other institutions, the drug-device combination is designed to quickly re-vascularize a vessel obstructed by a blood clot. The process involves an intra-arterial stent used to open a TEB, restoring enough blood flow to trigger a shear-activated nanotherapeutic (SA-NT) agent to dissolve the blood clot.

The SA-NT agent is composed of an aggregate of biodegradable nanoparticles coated with recombinant tissue plasminogen activator (r-tPA). As blood flow increases at the TEB location, the shear force grows, and the SA-NT agent reacts to it by releasing the r-tPA-coated nanoparticles in the partially occluded blood vessels. Hemodynamic stress causes the r-tPA to concentrate at the occlusion site, binding to the clot and dissolving it, thus providing high recanalization rates while reducing vascular injury.

After the blood clot is fully dissolved, the stent is re-sheathed and harmlessly removed from the vessel. If during the process any clot fragments break off and travel away through the circulatory system, the SA-NT drug-coated nanoparticles will remain bound to them and continue to dissolve them locally wherever they go. In clinically relevant large animal studies, the TEB/SA-NT combination worked very efficiently, dissolving clots that fully occluded brain blood vessels of the same size found in humans. The study was published on October 22, 2015, in Stroke.

“What's progressive about this approach is that the temporary opening of a tiny hole in the clot, using a stent device that is already commonly used clinically, results in a local rise in mechanical forces that activate the nanotherapeutic to deploy the clot-busting drug precisely where it can best do its job,” said senior author Donald Ingber, MD, PhD, of the Wyss Institute for Biologically Inspired Engineering.

“This has been a great collaboration between experts in the field of treating stroke and experts in mechanobiology and bioengineering,” said co-first author Netanel Korin, PhD, former Wyss Technology development fellow and current assistant professor in biomedical engineering at the Israel Institute of Technology (Technion; Haifa, Israel). “We hope that one day it will have a positive impact on patients suffering from a range of medical crises resulting from blood clot occlusions.”

Related Links:

Wyss Institute for Biologically Inspired Engineering
New England Center for Stroke Research
Israel Institute of Technology

Gold Supplier
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Surgical Light
HyLED 600 Series
Handheld POC Ultrasound
Medical Software
Bladder Scanner Graphics Workstation Software

Print article



view channel
Image: A novel research study moves the needle on predicting coronary artery disease (Photo courtesy of Pexels)

AI-Enabled ECG Analysis Predicts Heart Attack Risk Nearly as well as CT Scans

Increased coronary artery calcium is a marker of coronary artery disease that can lead to a heart attack. Traditionally, CT scans are used to diagnose buildup of coronary artery calcium, although CT scanners... Read more

Critical Care

view channel
Image: The new biomaterial heals tissues from the inside out (Photo courtesy of UC San Diego)

Groundbreaking Biomaterial Injected Intravenously Repairs Cells and Tissue Damaged by Heart Attack and TBI

Following a heart attack, there is development of scar tissue, which affects muscle function and can result in congestive heart failure. However, there is still no established treatment available for repairing... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more


view channel
Image: The global patient positioning systems market is projected to reach USD 1.7 billion by 2027 (Photo courtesy of Pexels)

Global Patient Positioning Systems Market Driven by Increasing Chronic Diseases

The global patient positioning systems market is projected to grow at a CAGR of 4% from USD 1.4 billion in 2022 to USD 1.7 billion by 2027, driven by increasing technological advancements in medical devices,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.