We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App


31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Electronic Grid Records Brain Activity during Surgery to Minimize Damage to Healthy Tissue

By HospiMedica International staff writers
Posted on 18 Jun 2024
Print article
Image: The PtNGrid features thin, flexible and densely packed grids of either 1,024 or 2,048 embedded ECoG sensors (Photo courtesy of David Baillot/UC San Diego Jacobs School of Engineering)
Image: The PtNGrid features thin, flexible and densely packed grids of either 1,024 or 2,048 embedded ECoG sensors (Photo courtesy of David Baillot/UC San Diego Jacobs School of Engineering)

A new electronic grid equipped with nanoscale sensors that records electrical signals from the human brain with unprecedented detail could enhance surgical planning and execution for removing brain tumors and treating drug-resistant epilepsy. The grid's enhanced resolution could help neurosurgeons minimize damage to healthy brain tissue and more precisely identify the brain regions responsible for epileptic seizures, ensuring safer and more effective treatments.

The new brain sensor array, known as platinum nanorod grid (PtNRGrid), has been developed by engineers at the University of California San Diego (La Jolla, CA, USA;). The PtNRGrid features a densely packed array of 1,024 electrocorticography (ECoG) sensors, offering a significant advance over the commonly used ECoG grids that typically contain only 16 to 64 sensors and are much thicker and less flexible. This new device is just 6 microns thin—less than one-tenth the thickness of a human hair—and is both flexible and conformable, allowing it to adhere closely to the brain's surface and bend with its movement. This capability enables it to provide high-quality, high-resolution recordings of brain activity.

Since 2019, the research team has been at the forefront of mapping human brain and spinal cord activity using thousands of channels and has documented early safety and efficacy results in human subjects. The PtNRGrid is unique in its ability to map motor and language activities, as well as epileptic discharges, producing detailed videos of brain waves across more than 10 square centimeters of the brain's cortex while maintaining microscopic-level resolution. Currently holding the world record for the most detailed brain activity recording from a single cortical grid, the team has logged data using 2,048 channels and has since increased this capacity to 4,096 channels. The research team continues to enhance the resolution of brain activity monitoring by increasing the number of channels in the grid.

The U.S. Federal Drug Administration (FDA) has approved a clinical trial for PtNRGrid and granted it an investigational device exemption (IDE) for a pivotal study. Engineers will collaborate with clinician-scientists to validate the device's effectiveness in mapping both normal and pathological brain activities. In the trial's first phase, surgeons will implant the PtNRGrid in 20 patients to evaluate and compare its performance against current state-of-the-art technology. The device will be used in surgeries for removing brain tumors and epileptic tissue. Successful outcomes from this trial could lead to commercial scaling of the PtNRGrid. This advancement in ECoG technology not only promises to refine surgical interventions but also opens new avenues in neuroscience, potentially deepening our understanding of brain functionality. Insights gained could drive the development of more effective treatments, leveraging a better understanding of brain processes.

“This accomplishment ushers in a new era of clinical neuroscience and neuromonitoring,” said Shadi Dayeh, a Professor in the Department of Electrical and Computer Engineering at UC San Diego who invented the grid. “We are very excited to receive the FDA approval to apply our groundbreaking PtNRGrid in a clinical setting.”

Related Links:
UC San Diego

Gold Member
Solid State Kv/Dose Multi-Sensor
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Wireless Mobile ECG Recorder
1.5T MRI Scanner

Print article


Critical Care

view channel
Image: A visualization of the blood-brain barrier disruption one hour post-treatment as noted by the diffusion of normally impermeant (Photo courtesy of APL Bioengineering)

New Technique Treats Aggressive Brain Tumors by Disrupting Blood-Brain Barrier

Glioblastoma, the most common malignant brain tumor, accounts for more than half of all such cancers. Despite the use of aggressive treatments like surgery, chemotherapy, and radiotherapy, the prognosis... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more


view channel
Image: The finalists have been announced for the IHF Awards 2024 (Photo courtesy of IHF)

International Hospital Federation Awards 2024 Finalists Announced

The International Hospital Federation (IHF; Geneva, Switzerland) has announced the finalists of the IHF Awards 2024 after the judges completed scoring entries in all 7 Award categories. The IHF Awards... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.