We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
NUVO - Division of Medical Illumination

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
08 Jun 2023 - 10 Jun 2023

3D-Printed Mesh Facilitates Orthopedic Brace Manufacture

By HospiMedica International staff writers
Posted on 04 Jul 2019
Print article
Image: Examples of 3D-printed meshes (Photo courtesy of MIT).
Image: Examples of 3D-printed meshes (Photo courtesy of MIT).
A new study suggests that additive manufacturing (AM) of biomechanically tailored flexible meshes could lead to personalized wearable and implantable devices.

Developed at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), the meshes are fabricated by extrusion of thermoplastic polyurethane using a continuous AM tool path to tailor the elasticity of the mesh cells via slack modification and modulation of the filament–filament bonding. The resulting mesh configuration resembles a tough, pliable fabric with directionally specific inversion stiffness. The wider the spacing of the unit cells, the more the mesh can be stretched at low strain before becoming stiffer, a design principle that tailors the mesh's degree of flexibility and helps it mimic soft tissue.

The pliable mesh can also be hardened by printing stainless steel fibers over regions of the elastic mesh where stiffer properties are needed, and then printing a third elastic layer over the steel to sandwich the stiffer thread into the mesh. The combination of both stiff and elastic materials provides the mesh with the ability to stretch easily up to a point, after which it starts to stiffen. The meshes can also be designed as an auxetic structure, a structure that becomes wider when pulled. Auxetic structures can also support highly curved surfaces of the body.

To demonstrate the capabilities of the new mesh, the researchers fashioned an ankle brace with directionally specific inversion stiffness arising from the embedded mesh, which can provide stronger support to prevent, for instance, a muscle from overstraining. They mesh's structure prevents the ankle from turning inward, while still allowing the joint to move freely in other directions. The tensile mesh mechanics of the brace were engineered to match the nonlinear response of muscle. The researchers also fabricated a knee brace that conforms to the knee as it bends, and a glove with a 3D-printed mesh sewn into its top surface, which conforms to a wearer's knuckles. The study was published on June 19, 2019, in Advanced Functional Materials.

“We were trying to think of how we can make 3D-printed constructs more flexible and comfortable, like textiles and fabrics. One of the reasons textiles are so flexible is that the fibers are able to move relative to each other easily,” said lead author mechanical engineer Sebastian Pattinson, PhD. “There's potential to make all sorts of devices that interface with the human body. Surgical meshes, orthoses, even cardiovascular devices like stents; you can imagine all potentially benefiting from the kinds of structures we show.”

Additive manufacturing describes technologies that build 3D objects using computer-aided design (CAD) modeling software, machine equipment, and layering material. Once a CAD sketch is produced, the data is relayed to the printer, which lays downs or adds successive layers of liquid, powder, sheet material or other, in a layer-upon-layer fashion to fabricate a 3D object. Many technologies are included in this definition, such as rapid prototyping, direct digital manufacturing, layered manufacturing, and additive fabrication.

Related Links:
Massachusetts Institute of Technology

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Patient Positioning Devices & OR Accessories
SchureMed Tools
New
Dose Area Product Measuring System
VacuDAP duo
New
Digital X-Ray Flat Panel Detector
2121DXV

Print article
FIME - Informa

Channels

AI

view channel
Image: The AI tool can also tackle dangerous inequalities in heart attack diagnosis (Photo courtesy of Freepik)

AI Algorithm Integrates Cardiac Troponin Test Results with Clinical Data to Quickly Rule out Heart Attacks in Patients

The accepted standard for diagnosing myocardial infarction, or heart attack, involves assessing the blood for troponin levels. However, this approach applies the same benchmark for all patients, failing... Read more

Critical Care

view channel
Image: The novel intravascular, catheter-based technology is designed to treat pulmonary hypertension (Photo courtesy of Freepik)

Minimally Invasive Catheter-Based Technology Treats Pulmonary Hypertension

Pulmonary hypertension, a deadly condition impacting roughly 500,000 patients annually across the world, is currently categorized as a rare disease. As it stands, available treatment options are restricted,... Read more

Surgical Techniques

view channel
Image: LIBERTY is the first ever single-use endovascular surgical robotic system designed to streamline endovascular procedures (Photo courtesy of Microbot Medical)

Tiny Surgical Robot Designed to Streamline Endovascular Interventional Procedures

The endovascular field currently has several unmet needs that can be fulfilled with robotics. However, the current uptake of robotics in this sector is exceptionally low, largely due to several barriers... Read more

Point of Care

view channel
Image: VCM viscoelastic testing instrument provides rapid, real-time hemostasis assessment at POC (Photo courtesy of Entegrion)

Next Gen Viscoelastic Coagulation Monitor Enables Rapid Hemostasis Assessment at Patient Side

The use of viscoelastic coagulation testing is on the rise for various applications such as trauma, surgery, obstetrics, major disease management, and more. It provides crucial information not obtained... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.