We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




3D Bioprinting Rebuilds the Human Heart

By HospiMedica International staff writers
Posted on 13 Aug 2019
Print article
Image: A trileaflet heart valve 3D printed using FRESH (Photo courtesy of CMU).
Image: A trileaflet heart valve 3D printed using FRESH (Photo courtesy of CMU).
A new study describes a collagen scaffold tissue engineering technique that brings us one step closer to being able to three-dimensionally (3D) print a full-sized, adult human heart.

Developed by researchers at Carnegie Mellon University (CMU; Pittsburgh, PA, USA), the technique, called freeform reversible embedding of suspended hydrogels (FRESH), allows collagen to be deposited layer-by-layer within a the hydrogel support bath, giving it a chance to solidify in place before it is removed. Controlling the pH-driven gelation provides a 20-micrometer filament resolution porous microstructure that enables rapid cellular infiltration and micro-vascularization, allowing the fabrication and perfusion of multiscale vasculature and tri-leaflet valves.

The FRESH support gel is easily melted away by heating it from room temperature to body temperature after printing is completed, without damaging the 3D printed collagen structure or the cells. The 3D-bioprinted collagen scaffold can be used to engineer components of the human heart at various scales, from capillaries to a full organ, with high fidelity and function. For the study, cardiac ventricles printed using human cardiomyocytes demonstrated synchronized contractions, directional action potential propagation, and wall thickening up to 14% during peak systole. The study was published on August 2, 2019, in Science.

“Collagen is an extremely desirable biomaterial to 3D print with because it makes up literally every single tissue in your body. What makes it so hard to 3D print, however, is that it starts out as a fluid; so if you try to print this in air it just forms a puddle on your build platform,” said co-lead author PhD student Andrew Hudson, MSc. “We've developed a technique that prevents it from deforming. What we're talking about is the convergence of technologies in the areas of stem cell science, machine learning, and computer simulation, as well as new 3D bioprinting hardware and software.”

Collagen is an ideal material for biofabrication due to its critical role in the extracellular matrix (ECM), where it provides mechanical strength, enables structural organization of cell and tissue compartments, and serves as a depot for cell adhesion and signaling molecules. However, it is difficult to 3D-bioprint complex scaffolds using collagen in its native unmodified form because gelation is typically achieved using thermally driven self-assembly, which is difficult to control.

Related Links:
Carnegie Mellon University

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90
New
Table-Top Reader
FCR PRIMA T2

Print article
Radcal

Channels

Critical Care

view channel
Image: Overview concept and material design of the bioabsorbable electrical stimulation suture (BioES-suture) for treating muscle gashes (Photo courtesy of Nature Communications; DOI: 10.1038/s41467-024-52354-x)

Cutting-Edge Intelligent Medical Sutures Accelerate Wound Healing

In surgical medicine, sutures are the standard treatment for large incisions, but traditional sutures have functional limitations. Electrical stimulation is a non-drug therapy known to enhance wound healing.... Read more

Surgical Techniques

view channel
Image: Fluorescein-enhanced contrast imaging shows a rabbit’s normal sciatic nerve, left, and a damaged one (Photo courtesy of Osaka Metropolitan University)

Glowing Approach Helps Surgeons Assess Neural Blood Flow in Chronic Nerve Compression Neuropathy

In today's office environment, preventing the onset of carpal tunnel syndrome can be a daily challenge. In severe cases, surgery may be required to relieve nerve compression or repair damaged nerves.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Point of Care

view channel
Image: The AI-powered platform improves point-of-care diagnostics with enhanced accuracy and real-time data (Photo courtesy of HueDx)

Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing

Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.