We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




3D Bioprinting Rebuilds the Human Heart

By HospiMedica International staff writers
Posted on 13 Aug 2019
Print article
Image: A trileaflet heart valve 3D printed using FRESH (Photo courtesy of CMU).
Image: A trileaflet heart valve 3D printed using FRESH (Photo courtesy of CMU).
A new study describes a collagen scaffold tissue engineering technique that brings us one step closer to being able to three-dimensionally (3D) print a full-sized, adult human heart.

Developed by researchers at Carnegie Mellon University (CMU; Pittsburgh, PA, USA), the technique, called freeform reversible embedding of suspended hydrogels (FRESH), allows collagen to be deposited layer-by-layer within a the hydrogel support bath, giving it a chance to solidify in place before it is removed. Controlling the pH-driven gelation provides a 20-micrometer filament resolution porous microstructure that enables rapid cellular infiltration and micro-vascularization, allowing the fabrication and perfusion of multiscale vasculature and tri-leaflet valves.

The FRESH support gel is easily melted away by heating it from room temperature to body temperature after printing is completed, without damaging the 3D printed collagen structure or the cells. The 3D-bioprinted collagen scaffold can be used to engineer components of the human heart at various scales, from capillaries to a full organ, with high fidelity and function. For the study, cardiac ventricles printed using human cardiomyocytes demonstrated synchronized contractions, directional action potential propagation, and wall thickening up to 14% during peak systole. The study was published on August 2, 2019, in Science.

“Collagen is an extremely desirable biomaterial to 3D print with because it makes up literally every single tissue in your body. What makes it so hard to 3D print, however, is that it starts out as a fluid; so if you try to print this in air it just forms a puddle on your build platform,” said co-lead author PhD student Andrew Hudson, MSc. “We've developed a technique that prevents it from deforming. What we're talking about is the convergence of technologies in the areas of stem cell science, machine learning, and computer simulation, as well as new 3D bioprinting hardware and software.”

Collagen is an ideal material for biofabrication due to its critical role in the extracellular matrix (ECM), where it provides mechanical strength, enables structural organization of cell and tissue compartments, and serves as a depot for cell adhesion and signaling molecules. However, it is difficult to 3D-bioprint complex scaffolds using collagen in its native unmodified form because gelation is typically achieved using thermally driven self-assembly, which is difficult to control.

Related Links:
Carnegie Mellon University

Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Supplier
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Mobile Wireless Endoscope Camera
DE1270 HD
New
Normothermia System
Astoline

Print article
Radcal

Channels

Critical Care

view channel
Image: The new blood test could prevent some of the 350,000 sepsis deaths in the U.S. annually (Photo courtesy of Cytovale)

Sepsis Test Could Save Lives in Emergency Departments, Study Suggests

Sepsis poses a severe, life-endangering illness that arises when an infection triggers a body-wide chain reaction, potentially causing multiple organs to fail quickly. Prompt and accurate diagnosis is... Read more

Surgical Techniques

view channel
Image: Suppressing production of an immune protein could reduce rejection of biomedical implants (Photo courtesy of 123RF)

Protein Identified for Immune Rejection of Biomedical Implants to Pave Way for Bio-Integrative Medical Devices

Biomedical implants like breast implants, pacemakers, and orthopedic devices have revolutionized healthcare, yet a substantial number of these implants face rejection by the body and have to be removed.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.