We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Ampronix,  Inc

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Ink Technology Toughens Synthetic Hydrogels

By HospiMedica International staff writers
Posted on 23 Oct 2014
Print article
Image: Fiber reinforced hydrogels printed in a single-step process (Photo courtesy of the University of Wollongong).
Image: Fiber reinforced hydrogels printed in a single-step process (Photo courtesy of the University of Wollongong).
A new study describes a three-dimensional (3D) printing technique used to print tough, fiber-reinforced hydrogels that mimic the strength and suppleness of human cartilage.

Researchers at the University of Wollongong (UOW; Australia) have developed an additive manufacturing process that combines digital modeling and 3D printing to prepare fiber reinforced hydrogels in a single-step process. The system works by simultaneously printing with two inks on a 3D printer customized with an ultraviolet (UV) curing system. One ink cures into a soft and wet hydrogel and the other to a hard and stiff plastic, which forms the reinforcing “fibers” within the structure.

The selective pattering uses a combination of alginate/acrylamide gel precursor solution and an epoxy based UV-curable adhesive (Emax) with an extrusion printer. Spatial control of the fiber distribution within the digital models allows for a spectrum of swelling behavior and mechanical properties with physical characteristics, ranging from “soft and wet” to “hard and dry”. A prototype meniscus cartilage was prepared to illustrate the potential application in bioengineering. The study describing the new technology was published on September 8, 2014, in ACS Applied Materials & Interfaces.

“Using computer aided design software, I can make a digital model of the fibers and hydrogel matrix, tuning the mechanical properties by carefully controlling the distribution of the fibers within our structures,” said lead author Shannon Bakarich, MSc, a PhD candidate at the UOW Intelligent Polymer Research Institute. “The printed fibers give strength to the hydrogel in the same way fiberglass gives strength to a surfboard.”

Related Links:

University of Wollongong

Print article



view channel

Siemens to Acquire Varian Medical to Create Comprehensive Cancer Portfolio

Siemens Healthineers (Erlangen, Germany) has entered into an agreement to acquire Varian Medical Systems, Inc. (Palo Alto, CA, USA) that will lead to the creation of a global leader in healthcare with... Read more
Copyright © 2000-2020 Globetech Media. All rights reserved.