We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

New Stent Graft Design Improves Blood Flow

By HospiMedica International staff writers
Posted on 09 Sep 2015
Print article
Image: The TAAA Debranching Stent Graft System (Photo courtesy of Sanford Health).
Image: The TAAA Debranching Stent Graft System (Photo courtesy of Sanford Health).
A novel branching stent graft that can be deployed from the top on down could help patients suffering from thoracoabdominal aortic aneurysms (TAAAs).

Developed by researchers at Sanford Health (Sioux Falls, SD, USA) and South Dakota State University (SD State; Brookings, SD, USA) under an exclusive patent license agreement with Medtronic (Dublin, Ireland), the TAAA Debranching Stent Graft System is comprised of a thoracic bifurcation and visceral manifold graft, which work together to facilitate endovascular stenting of the visceral vessels—the renal, celiac, and superior mesenteric arteries—while maintaining blood flow to the visceral and infrarenal segments.

The complexity of the design required the use of computational fluid dynamics (CFD) simulations, conducted at SD State, in order to create a geometrically correct model of each graft relative to the same aorta coordinates and positioning in the body trunk, as well as the arteries that feed the organs and extend into the legs. To model blood flow near the artery walls (where atherosclerosis tends to begin), the researchers had to consider oscillating shear index, time-averaged wall shear stress, relative residence time, and wall shear stress temporal gradient.

To account for the transient pulsatile flow of blood, an extensive data table was entered into the software specifying the volumetric flow rate of blood through the system every 1/5,000 of a second, outputing a solution every 1/1,000 of a second to simulate a one-second cycle. The CFD simulations helped the researchers show that flow behavior next to the artery wall is more ordered, predictable, and moderate with the new stent design, splitting the blood flow upstream and letting it gradually come to the renal arteries. A study describing the system and the procedure were published in the November 2014 issue of the Journal of Vascular Surgery.

“Taking the complex and making it simple has long been our goal for the treatment of TAAAs. Working with Medtronic could eventually place our solution in the hands of vascular surgeons around the world to help patients facing a life-threatening condition,” said Sanford Health vascular surgeon Patrick Kelly, MD, who developed the concept. “We hope that this will have a major impact on the treatment of one of the most challenging disease processes to face our specialty.”

Degradation of structural proteins such as collagen and elastin, or a defect in their composition, leads to medial degeneration and weakening of the aortic wall. TAAA then results from a continuous dilation of the descending thoracic aorta, extending into the abdominal aorta. Subsequent dilatation results from hemodynamic forces on the arterial wall, as well as intrinsic changes in the composition of the arterial wall itself, which cause the diameter of the aorta to expand further and increase wall tension, thus creating a vicious cycle.

Medtronic plans to study the system in collaboration with physicians at several medical centers, including Dr. Kelly at Sanford Health, starting in the near future, with the purpose of subsequently commercializing the system after obtaining the required regulatory approvals.

Related Links:

Sanford Health
South Dakota State University
Medtronic


Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
New
Portable Finger Pulse Oximeter
Onyx Vantage 9590
New
Data Management Platform
Track-it
New
Mobile Radiography System
NeuVision 550M (Plus)

Print article

Channels

AI

view channel
Image: MyoVista Wavelet technology utilizes AI for early detection of heart disease (Photo courtesy of Heart Test Laboratories)

Novel ECG Technology Utilizes AI for Early Detection of Heart Disease

Cardiovascular disease is responsible for 17.9 million deaths every year, or about 32% of all deaths worldwide. Every week, millions of electrocardiographs (ECGs) are performed across the world, making... Read more

Critical Care

view channel
Image: Studies have shown the Autus Valve maintains control of blood flow as it expands (Photo courtesy of Boston Children’s Hospital)

Heart Valve That Grows Along With Child Could Reduce Invasive Surgeries

In children with congenital pulmonary valve disease, the flow of blood between the heart and lungs is impeded. In cases where the pulmonary valves have narrowed or are leaking and cannot be treated effectively... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more

Business

view channel
Image: The global patient positioning systems market is projected to reach USD 1.7 billion by 2027 (Photo courtesy of Pexels)

Global Patient Positioning Systems Market Driven by Increasing Chronic Diseases

The global patient positioning systems market is projected to grow at a CAGR of 4% from USD 1.4 billion in 2022 to USD 1.7 billion by 2027, driven by increasing technological advancements in medical devices,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.