We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Novel Stitching Instrument Mimics Surgeon Hand Movement

By HospiMedica International staff writers
Posted on 09 Mar 2017
Print article
Image: The FlexdDex device enhances surgical suturing (Photo courtesy of FlexDex Surgical).
Image: The FlexdDex device enhances surgical suturing (Photo courtesy of FlexDex Surgical).
A simple, ergonomic all-mechanical device that mounts to the surgeon's arm mimics the direction of movement of their hand.

Developed by researchers at the University of Michigan, the FlexDex device is designed to precisely translate the surgeon’s hand, wrist, and arm movements from outside the patient into corresponding movements of an end-effector unit inside the patient's body. The purely mechanical instrument is based on the concept of a "virtual center" which locates the device's center of rotation at the same point as the surgeon's wrist.

“This is the culmination of 10 years of effort, and to know that the device is performing exactly as we expected it would, impacting patients' lives in a positive way - it's an amazing feeling. We always saw the potential, but now it's crystallized,” said pediatric surgeon Jim Geiger, MD, of U-M Medical School, and co-founder of FlexDex. “If I move my hand up, the device tip goes up. Wherever I move my hand, the tip of this instrument follows. No other instrument currently on the market operates like this.”

“FlexDex provides the functionality of robots at the cost of traditional hand-held laparoscopic instruments. It's kind of like the transition from mainframe computers to smartphones. You hardly need a manual to use it. It's just intuitive,” said mechanical engineering Professor Shorya Awtar, PhD, co-founder of FlexDex. “Our mission is to democratize minimally invasive surgery and expand its use around the U.S. and the world.”

FlexDex's core technology is the outcome of basic research and innovations in parallel kinematics, virtual center of rotation, and flexure mechanisms undertaken at the U-M Precision Systems Design Laboratory. Professors Geiger and Awtar, who established the technology, have joined forces with medical device entrepreneur Greg Bowles to found FlexDex Surgical, in order to translate their research into commercial medical products.

Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
LED Examination Lamp
Clarity 50 LED
New
Standing Sling
Sara Flex

Print article

Channels

Critical Care

view channel
Image: Changes in immune cells can predict patient recovery following out-of-hospital cardiac arrest (Photo courtesy of Adobe Stock)

Activating T Cells Could Improve Neurological Outcomes After Cardiac Arrest

Despite advancements in cardiopulmonary resuscitation (CPR) and improved hospital access, survival rates after out-of-hospital cardiac arrest (OHCA) remain low, with only about 10% of patients surviving.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.