We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Sweat Sensor Detects Key Biomarkers That Provide Early Warning of COVID-19 and Flu

By HospiMedica International staff writers
Posted on 04 May 2022
Print article
Image: Sweat sensor makes big strides in detecting infection indicators (Photo courtesy of University of Texas at Dallas)
Image: Sweat sensor makes big strides in detecting infection indicators (Photo courtesy of University of Texas at Dallas)

A team of bioengineers has designed a wearable sensor that can detect two key biomarkers of infection in human sweat, a significant step toward making it possible for users to receive early warnings of infections such as COVID-19 and influenza.

The sensor developed by bioengineers at University of Texas at Dallas (Richardson, TX, USA) in collaboration with EnLiSense LLC (Allen, TX, USA) uses passive sweat, which means that the wearer does not need to engage in physical activity or have their sweat glands expressed to generate a sample. Real-time continuous monitoring is possible as sweat is collected on a removable strip, which must be changed daily. The latest research builds on an earlier study by the team which demonstrated that the sweat sensor could detect C-reactive protein (CRP) to indicate an impending cytokine storm. A molecular test, such as a polymerase chain reaction (PCR) test, would still be needed to confirm the type of pathogen causing an infection, according to the researchers.

In a study to test the sensor, the researchers collected sweat from 18 healthy people who wore the sensor. They also drew blood from the subjects and compared the results. The study demonstrated that the sweat sensor can identify the biomarkers interferon-gamma-inducible protein (IP-10) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Elevated levels of IP-10 and TRAIL indicate what is known as a cytokine storm, a surge of pro-inflammatory immune proteins generated in the most serious infections. The ability to detect IP-10 and TRAIL is important because, in addition to CRP, they allow diagnosticians to distinguish between viral and bacterial infections. Researchers next plan to evaluate the sensor in clinical studies with patients experiencing respiratory infections.

“Our work is pioneering since, until this date, it was unclear whether these molecules were present in sweat,” said Dr. Shalini Prasad, head of bioengineering and the Cecil H. and Ida Green Professor in Systems Biology Science. “We established that our low-volume passive sweat technology is indeed able to measure these biomarkers.”

“We have built a technology to unlock and explore the latest frontier in sweat diagnostics,” added Prasad. “This sweat-based, wearable technology from EnLiSense is truly transformational in that it can measure and report human host response messenger molecules associated with inflammation and infection in a real-time and continuous manner.”

Related Links:
University of Texas at Dallas 
EnLiSense LLC 

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Multi-Parameter Patient Monitor
S80
New
Electric Gynecological Operating Table
YF-6
New
Silver Supplier
Patient Simulator
PatSim 200

Print article
FIME - Informa

Channels

AI

view channel
Image: The AI tool can also tackle dangerous inequalities in heart attack diagnosis (Photo courtesy of Freepik)

AI Algorithm Integrates Cardiac Troponin Test Results with Clinical Data to Quickly Rule out Heart Attacks in Patients

The accepted standard for diagnosing myocardial infarction, or heart attack, involves assessing the blood for troponin levels. However, this approach applies the same benchmark for all patients, failing... Read more

Critical Care

view channel
Image: New technology gives patients the power to heal chronic wounds using their own blood (Photo courtesy of RedDress)

POC Solution Creates In Vitro Blood Clots from Patient’s Own Whole Blood in Real-Time to Treat Post-Surgical Wounds

Blood clots are a natural mechanism of the body's healing process. However, for chronic wounds resulting from diabetes and other conditions, blood is unable to reach these areas, hampering the initiation... Read more

Surgical Techniques

view channel
Image: The deployable electrodes are ideal for minimally invasive craniosurgery (Photo courtesy of EPFL)

Soft Robotic Electrode Offers Minimally Invasive Solution for Craniosurgery

Minimally invasive medical procedures offer numerous benefits to patients, including decreased tissue damage and shorter recovery periods. However, creating equipment that can pass through a small opening... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: IntelliSep is the first FDA-cleared diagnostic tool to assess cellular host response to aid in identifying ED patients with sepsis (Photo courtesy of Cytovale)

Rapid Microfluidic Test Demonstrates Efficacy as Diagnostic Aid to Improve Sepsis Triage in ED

Sepsis is the primary cause of mortality worldwide, accounting for over 350,000 fatalities annually in the United States alone, a figure that surpasses deaths from opioid overdoses, prostate cancer, and... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.