We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

By HospiMedica International staff writers
Posted on 01 Jun 2022
Print article
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like the intestines. What kind of material will adhere there without damaging the tissue or sticking to adjacent points? How can wounds be protected from external influences and bacteria? What kind of substance will allow cells underneath to close the wound, and then ultimately disappear without a trace? In spite of recent progress in developing materials addressing some of the specific requirements mentioned above, engineering a multifunctional all-in-one solution remains a challenge. A newly-developed film not only protects wounds similar to the way a bandage does, but also helps wounds to heal faster, repels bacteria, dampens inflammation, releases active pharmaceutical ingredients in a targeted manner and ultimately dissolves by itself. This is all made possible by its dedicated design and the use of mucins, molecules which occur naturally in mucous membranes.

A team of researchers at the Technical University of Munich (TUM, Munich, Germany) has developed a biopolymer film that combines a wide range of different functions at the same time. In a recently published study, the biomolecular “bandage” showed highly promising results and is ready to undergo further testing and tailoring. The team was able to show that these biomolecular bandages even adhere to smooth surfaces such as cartilage and moist tissue such as tongue without damaging the tissue surface. Covering a skin wound with this film even sped up the healing process. One particular goal of this study was to develop a material combination that completely dissolves by itself after several days without leaving any residues. The researchers were able to demonstrate this aspect in their experiments using high-resolution microscopy images of treated tissue samples.

The film consists of two layers, making it possible to design each side such that it can perform special tasks. The top side consists of a biodegradable polymer which renders the thin film stable, and it also contains mucins. The bottom side of the film contains hyaluronic acid, a material well-known for its ability to bind water and to promote the healing of wounds. Other molecules are chemically bound to those hyaluronic acid macromolecules and make sure that the film becomes sticky upon contact with moisture, allowing the film to adhere to a tissue spontaneously. When desired, active pharmaceutical ingredients such as antibiotics can also be integrated into the bottom layer. The two-layer structure makes it possible to release the active ingredients in only one specific direction: towards the wound.

To date, the new material combination has been tested on various animal tissue samples. In addition, the team was able to demonstrate accelerated wound healing in animal tests, which is an important step on the way to clinical application. The suitability of the bandage for potential future use with human patients will be examined in additional studies. In the future, these bandages could be optimized for selected application cases and particular types of tissue. Since the films completely dissolve in the presence of moisture, they could also be used in surgery to temporarily protect internal wounds which are afterwards inaccessible, for example after closure of an incision with a suture.

"Mucins are molecules which occur naturally on mucous membranes of our bodies. Here, we have used them for the first time in biomolecular films to support wound healing," explained Oliver Lieleg, Professor of Biomechanics at the TUM, who has been investigating these molecules for over a decade. "They provide important properties to protect the wound during the healing process: They have anti-bacterial properties, dampen inflammation and prevent unwanted cells from colonizing the wound."

"When dry, the thin and flexible film can be picked up with tweezers and can easily be placed onto a wound. Upon contact with moist tissue, the bottom side of the film becomes squishy and sticky and adheres to the tissue by itself - without requiring additional fixation," addd Ceren Kimna, doctoral candidate at the TUM and first author of the study.

Related Links:
Technical University of Munich 


Print article
Radcal

Channels

AI

view channel
Image: ‘Hologram patients’ developed to help train doctors and nurses (Photo courtesy of University of Cambridge)

Life-Like Hologram Patients Train Doctors for Real-Time Decision Making in Emergencies

A medical training project using 'mixed reality' technology aims to make consistent, high-level and relevant clinical training more accessible across the world. University of Cambridge (Cambridge, UK)... Read more

Critical Care

view channel
Image: New device could provide alternative to opioids and other highly addictive drugs (Photo courtesy of Northwestern University)

Dissolving Implantable Device Can Manage Post-Operative Pain Without Drugs

Researchers have developed a small, soft, flexible implant that relieves pain on demand without the use of drugs. The first-of-its-kind device could provide a much-needed alternative to opioids and other... Read more

Surgical Techniques

view channel
Image: The Senhance surgical system with digital laparoscopy (Photo courtesy of Asensus Surgical)

Digital Laparoscopic Platform Leverages Augmented Intelligence and Machine Learning

Challenges in laparoscopic surgery can impact cost, utilization, effectiveness, and outcomes of the procedure. For instance, the inability of the surgeon to control vision can create efficiency and safety... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more

Business

view channel
Image: Expanding the role of autonomous robots can mitigate the shortage of physicians (Photo courtesy of Pexels)

Robot-Assisted Surgical Devices Market Driven by Increased Demand for Patient-Specific Surgeries

An aging population and accompanying retirements will cause a significant physician shortfall of 55,000 to 150,000 by 2030, creating a gap in the healthcare system. Expanding the role of autonomous robots... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.