We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Plant-Based Microrobots Could Conduct Minimally Invasive Biopsies

By HospiMedica International staff writers
Posted on 30 Oct 2023
Print article
Image: Plant-based materials give life to tiny soft robots that can potentially conduct medical procedures (Photo courtesy of 123RF)
Image: Plant-based materials give life to tiny soft robots that can potentially conduct medical procedures (Photo courtesy of 123RF)

Over the last decade, small and flexible robots have demonstrated potential for minimally invasive medical procedures. These robots should be able to change their shapes in complex ways to adapt to various conditions in real-world settings, including unpredictable situations. Researchers have now developed new smart materials that serve as the foundation for the next wave of tiny medical robots. These minuscule robots, with a maximum length of just one centimeter, can perform tasks like biopsies or transporting cells and tissues in a minimally invasive manner. They are made of advanced, non-toxic, bio-compatible hydrogel composites, containing plant-derived cellulose nanoparticles. These robots are capable of navigating through tight, fluid-filled spaces like those found within the human body.

For the research, scientists at University of Waterloo (Waterloo, ON, Canada) adopted a holistic approach to designing these microrobots. They focused on every aspect, from conception to the material's synthesis, and even how to control their movements. The hydrogel material can change its shape when influenced by external chemicals. With the use of cellulose nanoparticles, the researchers can program these shape alterations, a critical factor in making functional soft robots. Another remarkable feature of this material is its self-healing property. This means the material can be cut and rejoined without the need for glue or other adhesives, allowing for a wide range of shapes suited to various medical procedures. In addition, the material can be magnetized, enabling easy control of the robot's movement within the human body. To demonstrate this, the team successfully maneuvered the tiny robot through a maze using a magnetic field. The next phase of their research aims to shrink these robots even further, down to sub-millimeter sizes.

"In my research group, we are bridging the old and new," said Shahsavan, director of the Smart Materials for Advanced Robotic Technologies (SMART-Lab). "We introduce emerging microrobots by leveraging traditional soft matter like hydrogels, liquid crystals, and colloids."

"Chemical engineers play a critical role in pushing the frontiers of medical microrobotics research," Shahsavan added. "Interestingly, tackling the many grand challenges in microrobotics requires the skillset and knowledge chemical engineers possess, including heat and mass transfer, fluid mechanics, reaction engineering, polymers, soft matter science, and biochemical systems. So, we are uniquely positioned to introduce innovative avenues in this emerging field."

Related Links:
University of Waterloo 

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Proctology Attachment
Proctology Attachment

Print article

Channels

Critical Care

view channel
Image: The first healthcare device to be powered by body heat was made possible by the use of liquid-based metals (Photo courtesy of Carnegie Mellon)

Healthcare Device Powered By Body Heat Marks First Step Toward Battery-Free Wearable Electronics

Portable, wearable electronics for physiological monitoring are gaining preference over traditional tethered devices in clinical settings due to their convenience for continuous or frequent monitoring.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.