We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Self-Propelled Medical Microrobots Could Perform Non-Invasive Surgeries

By HospiMedica International staff writers
Posted on 25 May 2023
Print article
Image: Microrobot seen under a scanning electron microscope (Photo courtesy of Shields Lab)
Image: Microrobot seen under a scanning electron microscope (Photo courtesy of Shields Lab)

Interstitial cystitis, or painful bladder syndrome, affects millions of people and causes intense pelvic pain. The treatment process for the disease can be similarly distressing, often necessitating multiple clinic visits over several weeks, where a potent solution of dexamethasone, a widely used steroid medication, is introduced into the bladder via a catheter. Now, microrobots may be able to provide some relief, according to new research that marks a huge step forward for tiny robots. Moreover, these microrobots may be able to conduct specific tasks within the body, like non-invasive surgeries.

A team of engineers at the University of Colorado Boulder (Boulder, CO, USA) has designed a new class of tiny, self-driven robots capable of moving incredibly fast through liquid. This innovation might pave the way for transporting prescription drugs to hard-to-access regions within the human body in the future. The size of these microrobots is remarkably small, each only 20 micrometers wide, which is several times tinier than the diameter of a human hair. Additionally, they possess astonishing speed, reaching about 3 millimeters per second or roughly 9,000 times their length per minute, outpacing a cheetah in relative terms.

These microrobots are constructed from materials known as biocompatible polymers using a technique similar to 3D printing. Resembling tiny rockets with three miniature fins, they each harbor a small air bubble, similar to an inverted glass submerged in water. When these robots are subjected to an acoustic field, like that used in ultrasound, the trapped air bubbles begin to vibrate vigorously, pushing water away and propelling the robots forward.

To test their invention, the researchers focused on bladder disease. In lab experiments, they created swarms of microrobots encapsulating high doses of dexamethasone. They then injected thousands of these robots into the bladders of laboratory mice. The microrobots spread throughout the organs and latched onto the bladder walls, making them difficult to excrete through urination. Once in position, they gradually released the dexamethasone over approximately two days. This sustained medication delivery could enable patients to receive a greater dosage over a prolonged period, thereby enhancing treatment outcomes. The researchers still have significant ground to cover before these microrobots can travel through real human bodies. To begin with, the researchers aim to make these robots fully biodegradable, so they eventually disintegrate within the body.

“Imagine if microrobots could perform certain tasks in the body, such as non-invasive surgeries,” said Jin Lee, lead author of the study and a postdoctoral researcher in the Department of Chemical and Biological Engineering. “Instead of cutting into the patient, we can simply introduce the robots to the body through a pill or an injection, and they would perform the procedure themselves.”

Related Links:
University of Colorado Boulder

Gold Supplier
Portable X-Ray System
FDR Xair
Abdominal Stent Graft Platform
Ovation iX
Premium Ultrasound System
RS85 Prestige
Mobile X-Ray Table
X Mobil

Print article
FIME - Informa



view channel
Image: The AI tool can also tackle dangerous inequalities in heart attack diagnosis (Photo courtesy of Freepik)

AI Algorithm Integrates Cardiac Troponin Test Results with Clinical Data to Quickly Rule out Heart Attacks in Patients

The accepted standard for diagnosing myocardial infarction, or heart attack, involves assessing the blood for troponin levels. However, this approach applies the same benchmark for all patients, failing... Read more

Critical Care

view channel
Image: New technology gives patients the power to heal chronic wounds using their own blood (Photo courtesy of RedDress)

POC Solution Creates In Vitro Blood Clots from Patient’s Own Whole Blood in Real-Time to Treat Post-Surgical Wounds

Blood clots are a natural mechanism of the body's healing process. However, for chronic wounds resulting from diabetes and other conditions, blood is unable to reach these areas, hampering the initiation... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: IntelliSep is the first FDA-cleared diagnostic tool to assess cellular host response to aid in identifying ED patients with sepsis (Photo courtesy of Cytovale)

Rapid Microfluidic Test Demonstrates Efficacy as Diagnostic Aid to Improve Sepsis Triage in ED

Sepsis is the primary cause of mortality worldwide, accounting for over 350,000 fatalities annually in the United States alone, a figure that surpasses deaths from opioid overdoses, prostate cancer, and... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.