We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App

Shape-Shifting Robotic Catheter to Make Heart Surgery Safer

By HospiMedica International staff writers
Posted on 12 Dec 2023
Print article
Image: The new robotic catheter features both a deployable stabilization mechanism and a flexible manipulator tip (Photo courtesy of Rogatinsky et al.)
Image: The new robotic catheter features both a deployable stabilization mechanism and a flexible manipulator tip (Photo courtesy of Rogatinsky et al.)

Presently, open-heart surgeries comprise a significant share of cardiac procedures and offer surgeons substantial control but involve lengthy recovery times and are unsuitable for certain high-risk patients. Alternative less invasive techniques involve threading catheters through the body’s vasculature to the heart. However, these instruments often lack the necessary size and dexterity, as they can be easily displaced by the heart's movements and surgeons have to struggle to precisely target tissue. Meeting these conflicting requirements of size and flexibility has proved to be a significant challenge for researchers developing new surgical tools. Now, researchers have developed a new robotic catheter that could help surgeons perform cardiac procedures with greater ease.

The novel catheter, designed by a team of physicians and engineers at Boston University (Boston, MA, USA), is equipped with a shape-shifting feature, enabling it to navigate complex anatomies while providing the stability needed for heart surgeries. The key to the catheter's design is its air pressure-operated, flexible tip. This allows it to be slender enough for vein insertion yet capable of inflating inside the heart for necessary tasks. An expandable ring added to the catheter provides stability by anchoring it against the vein walls near the heart's entrance. This combination of a stabilizing mechanism and an inflatable tip allows the catheter to exert sufficient force for surgical tasks in the heart without being knocked back by its beats, and then retract for easy removal. The device's potential was demonstrated in a study simulating two cardiac procedures using animal tissue, indicating its future role in making heart surgeries safer and less physically demanding.

The team tested this device on an ex vivo pig heart, targeting the right atrium. One test involved a pacemaker lead placement, where five novice operators completed the procedure using the robotic catheter, matching the time taken by an expert with a conventional catheter. The second test simulated the initial stage of a tricuspid valve repair, a more complex operation typically requiring open-heart surgery. The researchers attached a pig's tricuspid valve to a motor to mimic a beating heart and successfully conducted the anchoring step of the procedure. The next phase for this innovative technology involves trials on live subjects and more complex procedures. The ultimate aim is to reduce reliance on invasive open-heart surgeries, thereby transforming cardiac care.

“As we discuss these results with physicians working in the field, we see a high level of enthusiasm and hear of more and more applications for this technology,” said senior author Tommaso Ranzani, Ph.D., a professor of mechanical engineering at Boston University. “I think generally that this strategy is taking us in the right direction.”

Related Links:
Boston University

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Solid State Kv/Dose Multi-Sensor
Silver Member
Wireless Mobile ECG Recorder
Silver Member
ECG Management System

Print article


Critical Care

view channel
Image: The therapeutic tool can be used for children with kidney issues stemming from sepsis (Photo courtesy of 123RF)

New Device Treats Acute Kidney Injury from Sepsis

Sepsis, commonly referred to as "blood poisoning," can occur due to any infectious agent, triggering a systemic response by the body to combat the infection. This response involves the activation of circulating... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.