Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Bioceramic Surgical Screw Implants Bond with Bone

By HospiMedica International staff writers
Posted on 08 Nov 2016
A new bioceramic implant screw nail, dubbed a “scrail,” is made of calcium phosphate, which greatly resembles the composition of bone material.

Developed by researchers at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM; Bremen, Germany), University Hospital Giessen-Marburg (Marburg, Germany) and other institutions, the scrail, contrary to medical screws made of titanium or polymer, is not designed be screwed into the bone. More...
Instead, it’s intended to be carefully hammered into place, with a specially shaped thread that involves a minimum number of rotations, thus reducing the risk of damage to tendons and bones.

In contrast to metal components, the ceramic scrail integrates into the bone and does not have to be removed, since the two components – calcium phosphate and hydroxyapatite – are very similar to bone material. The greatest challenge was attaining the maximum strength of the material, since ceramics are fairly breakable. This was solved using injection molding, with hydroxyapatite powder poured into scrail molds and then heated. The procedure is particularly suited to mass production, but can also be used in conjunction with three-dimensional (3D) printers, allowing production of patient-specific implants.

“Ceramic-based screw nails do not disintegrate, but instead bond with the bone. Ideally, they can even accelerate bone growth,” said Sebastian Hein, PhD, of Fraunhofer IFAM. “This is a distinct advantage over polymer screws, which disintegrate in the body. Degradation products from polymer screws can cause inflammation; additionally, after the disintegration of the screws, cavities can form in bones, rendering them unstable and more prone to breaking.”

Implant screws can be used for attachment of implants to bone, bone to bone fixation, soft tissue fixation, or anchorage. They are designed to maximize initial contact and distribute the mechanical load by enhancing surface area, dissipating and distributing stresses at the screw-bone interface, and increasing pullout strength. When used with plates, they act to increase the friction between the plate and the bone.

Related Links:
Fraunhofer Institute for Manufacturing Technology and Advanced Materials
University Hospital Giessen-Marburg

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Neonatal Ventilator Simulation Device
Disposable Infant Test Lung
Emergency Ventilator
Shangrila935
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.