We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
77 ELEKTRONIKA

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Biocompatible Tracking System Advances Robotic Surgery

By HospiMedica International staff writers
Posted on 28 Feb 2017
Print article
Image: The STAR performing supervised autonomous robotic surgery (Photo courtesy of CNHS).
Image: The STAR performing supervised autonomous robotic surgery (Photo courtesy of CNHS).
A new study describes how biocompatible near-infrared fluorescent (NIRF) markers have the potential to improve robot-assisted surgery.

Under development at the Children's National Health System (CNHS) for use with the Smart Tissue Autonomous Robot (STAR) system, the three dimensional (3D) tracking system is comprised of small, biocompatible NIRF markers and a novel fused plenoptic and near-infrared (NIR) camera that enables the robot to overcome blood and tissue occlusion in an uncontrolled, rapidly changing surgical environment. The design takes advantage of the fact that near-infrared light can penetrate deeper into tissues than visual light.

In robotic experiments that compared the tracking accuracies of the system against standard optical tracking methods, the researchers observed that at speeds of 1 mm/second, tracking accuracies of 1.61 mm were achieved, which degraded only slightly (to 1.71 mm) when the NRIF markers were covered in blood and tissue. According to the researchers, using the markers to guide suturing during STAR surgery has the potential to improve manual and robot-assisted surgery and enhance accuracy. The study was published in the March 2017 issue of IEEE Transactions on Biomedical Engineering.

“A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, which makes it difficult to differentiate from surrounding tissue,” said senior author Axel Krieger, PhD, of the CNSH Sheikh Zayed Institute for Pediatric Surgical Innovation. “By enabling accurate tracking of tools and tissue in the surgical environment, this innovative work has the potential to improve many applications for manual and robot-assisted surgery.”

The STAR system is a supervised robot that effectively removes the surgeon's hands from the procedure, relegating him to the role of director, with the robot itself working autonomously to plan and perform stitching or suturing. The STAR consists of tools for suturing, fluorescent and 3D imaging, force sensing, and submillimeter positioning. In addition, an intelligent software algorithm combines with the tracking system to guide and autonomously adjust the surgical plan as the tissue moves around and changes.

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
12-Channel ECG
CM1200B
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Multi-Parameter Patient Monitor
TR6628-7

Print article

Channels

Critical Care

view channel
Image: Peerbridge Cor is a 3-lead, 2-channel wireless AECG that simplifies the testing and diagnostic process (Photo courtesy of Peerbridge Health)

First-of-its-Kind Trial to Measure Ejection Fraction Severity Directly from AI-Enabled Remote ECG Wearable

Echocardiograms are a standard diagnostic tool to measure ejection fraction but require a clinical setting for administration. This can pose challenges such as scheduling delays, staffing shortages, accessibility... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.