We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Biocompatible Tracking System Advances Robotic Surgery

By HospiMedica International staff writers
Posted on 28 Feb 2017
Print article
Image: The STAR performing supervised autonomous robotic surgery (Photo courtesy of CNHS).
Image: The STAR performing supervised autonomous robotic surgery (Photo courtesy of CNHS).
A new study describes how biocompatible near-infrared fluorescent (NIRF) markers have the potential to improve robot-assisted surgery.

Under development at the Children's National Health System (CNHS) for use with the Smart Tissue Autonomous Robot (STAR) system, the three dimensional (3D) tracking system is comprised of small, biocompatible NIRF markers and a novel fused plenoptic and near-infrared (NIR) camera that enables the robot to overcome blood and tissue occlusion in an uncontrolled, rapidly changing surgical environment. The design takes advantage of the fact that near-infrared light can penetrate deeper into tissues than visual light.

In robotic experiments that compared the tracking accuracies of the system against standard optical tracking methods, the researchers observed that at speeds of 1 mm/second, tracking accuracies of 1.61 mm were achieved, which degraded only slightly (to 1.71 mm) when the NRIF markers were covered in blood and tissue. According to the researchers, using the markers to guide suturing during STAR surgery has the potential to improve manual and robot-assisted surgery and enhance accuracy. The study was published in the March 2017 issue of IEEE Transactions on Biomedical Engineering.

“A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, which makes it difficult to differentiate from surrounding tissue,” said senior author Axel Krieger, PhD, of the CNSH Sheikh Zayed Institute for Pediatric Surgical Innovation. “By enabling accurate tracking of tools and tissue in the surgical environment, this innovative work has the potential to improve many applications for manual and robot-assisted surgery.”

The STAR system is a supervised robot that effectively removes the surgeon's hands from the procedure, relegating him to the role of director, with the robot itself working autonomously to plan and perform stitching or suturing. The STAR consists of tools for suturing, fluorescent and 3D imaging, force sensing, and submillimeter positioning. In addition, an intelligent software algorithm combines with the tracking system to guide and autonomously adjust the surgical plan as the tissue moves around and changes.

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
AI-Enabled EEG Analysis Software
autoSCORE
New
Ultra-Flat DR Detector
meX+1717SCC

Print article
Radcal

Channels

Critical Care

view channel
Image: Overview concept and material design of the bioabsorbable electrical stimulation suture (BioES-suture) for treating muscle gashes (Photo courtesy of Nature Communications; DOI: 10.1038/s41467-024-52354-x)

Cutting-Edge Intelligent Medical Sutures Accelerate Wound Healing

In surgical medicine, sutures are the standard treatment for large incisions, but traditional sutures have functional limitations. Electrical stimulation is a non-drug therapy known to enhance wound healing.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The AI-powered platform improves point-of-care diagnostics with enhanced accuracy and real-time data (Photo courtesy of HueDx)

Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing

Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.