We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Brain Stimulation Reduces Spasticity after Spinal Cord Injury

By HospiMedica International staff writers
Posted on 03 Jul 2017
A new study claims that excitatory intermittent theta burst stimulation (iTBS) is successful in reducing spasticity in patients with spinal cord injury (SCI).

Researchers at Paracelsus Medical University (Salzburg, Austria), the University of Verona (Italy), and other institutions conducted a study to investigate if iTBS, a safe, non-invasive and well-tolerated protocol of excitatory repetitive transcranial magnetic stimulation (rTMS), is effective in modulating spasticity. More...
The study included ten subjects with incomplete cervical or thoracic SCI. Five patients received 10 days of real or iTBS, and the remaining five received sham treatment. After two months, the sham group was switched to real iTBS and the study continued.

The researchers measured motor-evoked potentials (MEP) in the soleus (calf muscle), during magnetic stimulation over the most responsive area of the scalp. M-wave and H reflexes, which are measures of muscle contractions due to stimulation of the tibial nerve, were assessed for each subject, and an H/M amplitude ratio was determined. Modified Ashworth Scale (MAS) and the Spinal Cord Injury Assessment Tool for Spasticity (SCAT) were also compared before and after the stimulation protocols.

The results showed that patients receiving real iTBS showed significant increased resting and active MEPs amplitude and a significant reduction of the H/M amplitude ratio. In addition, both MAS and SCAT scores were significantly reduced after treatment. The changes persisted up to one week after the end of the iTBS treatment, and were not observed under the sham-iTBS condition, suggesting that iTBS may be a promising therapeutic tool for spasticity in SCI patients. The study was published on June 6, 2017, in Restorative Neurology and Neuroscience.

“Patients receiving real iTBS, compared to those receiving sham treatment, showed significant improvement,” said lead author Raffaele Nardone, MD, PhD, of Paracelsus Medical University. “In comparison with standard rTMS protocols, iTBS represents a more feasible approach because of lower stimulation intensity and shorter duration of application in each single session.”

Spasticity is a muscle control disorder caused by an imbalance between signals from the central nervous system (CNS) to the muscles. It is often found in people with cerebral palsy, traumatic brain injury (TBI), SCI, stroke, and multiple sclerosis (MS). It is characterized by increased muscle tone, overactive reflexes, involuntary movements, which may include spasms and clonus, pain, decreased functional abilities, abnormal posture, contractures, and bone and joint deformities.

Related Links:
Paracelsus Medical University
University of Verona

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Semi‑Automatic Defibrillator
Heart Save AED (ED300)
Neonatal Ventilator Simulation Device
Disposable Infant Test Lung
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The 3D-printed microneedle patch boosts live-virus vaccine delivery (Photo courtesy of IIS/University of Tokyo)

3D-Printed Delivery System Enhances Vaccine Delivery Via Microneedle Array Patch

The COVID-19 pandemic underscored the need for efficient, durable, and widely accessible vaccines. Conventional vaccination requires trained personnel and cold-chain logistics, which can slow mass immunization... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.