We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




3D-Printed Implants Improve Amputee Prosthetics Integration

By HospiMedica International staff writers
Posted on 10 Jul 2017
A new study shows that three dimensional (3D) additive manufacturing (AM) printing technologies can be used to customize implant surface textures and geometries to match the specific anatomy of human amputees.

Researchers at the University of North Carolina (UNC, Chapel Hill, USA) and North Carolina State University (NC State, Raleigh, USA) conducted a study to evaluate electron beam melting (EBM) and direct metal laser sintering (DMLS) for the manufacture of titanium osseointegrated implants. More...
While EBM produces only a coarse textured implant, DMLS can create either a fine or coarse textured surface. For the study, two cohorts of Sprague-Dawley rats received bilateral titanium implants in their distal femurs, and were followed for four weeks.

The first cohort animals received EBM implants transcortically in one femur and a DMLS implant in the contralateral femur. The second cohort received DMLS implants (either fine textured or coarse textured in order to mimic EBM) in the intramedullary canal of each femur. The researchers then compared the two AM methods and the resulting strength of bone integration, interlocking, and torque. The results showed substantial differences between the two methods, including osseointegration and torsional properties, bone volume fraction (BV/TV), and bone-implant contact (BIC).

The researchers found that fixation strength of coarse textured implants provided superior interlocking, relative to fine textured implants, without affecting BV/TV or BIC in both rat cohorts. The coarse EBM implants in the transcortical model demonstrated an 85% increase in removal torque relative to the fine DMLS textured implants. On the other hand, the thrust load in the intramedullary model saw a 35% increase from fine to coarse DMLS implants. The study was published in the June 2017 issue of 3D Printing and Additive Manufacturing.

“Osseointegrated implants transfer loads from native bone to a synthetic joint and can also function transdermally to provide a stable connection between the skeleton and the prostheses, eliminating many problems associated with socket prostheses,” concluded senior author Paul Weinhold, PhD, of UNC, and colleagues. “Additive manufacturing provides a cost-effective means to create patient-specific implants, and allows for customized textures for integration with bone and other tissues. Due to spatial resolution, DMLS can produce surfaces with a roughness comparable to EBM.”

Direct transcutaneous osseointegrated prostheses constitute an emerging alternative to traditional socket prostheses that offer a stable connection, and the elimination of dermal lesions caused by the socket-skin interface. Osseointegrated implants also transfer loads from the residual native bone to a synthetic joint and back to the opposing bone in total joint replacements. AM implants provide a cost-effective means to customize the shape of the implant to interface with a patient's unique bone morphology, and allow for the customization of the surface texture that integrates directly with the bone and other tissues.

Related Links:
University of North Carolina
North Carolina State University

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
ow Frequency Pulse Massager
ET10 L
Half Apron
Demi
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.