Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




A Nanofiber Bandage with Minimal Adhesion Encourages Rapid Clotting

By HospiMedica International staff writers
Posted on 28 Jan 2020
A new study unveils a bandage made of superhydrophobic (SHP) hemostatic nanofiber composites that helps blood clot faster and eases detachment after clot shrinkage.

Developed at the Swiss Federal Institute of Technology (ETH; Zurich, Switzerland) and the National University of Singapore (NUS, Singapore), the new bandage is based on a SHP surface with immobilized carbon nanofibers (CNFs), which promote fast fibrin growth and convey anti-bacterial properties. More...
The hemostatic surface simultaneously promotes fast clotting with no blood loss, and due to the presence of micro-air pockets within the blood-substrate contact area, there is minimal contact between the clot and the SHP CNF patch, leading to natural detachment after clot maturation and shrinkage.

To verify the features in vivo, experiments were performed on rats with the back-bleeding model. While normal gauze absorbed blood and left behind an open wound, no blood was observed seeping through the CNF gauze, demonstrating excellent blood-repelling property. Further, a darkened gel-like clot was observed under the CNF gauze after three minutes, which properly sealed the wound, as opposed to the wound that remained open under the control gauze. The average blood loss was just 1.5% of that for the normal gauze. The study was published on December 5, 2019, in Nature Communications.

“With the new superhydrophobic material, we can avoid reopening the wound when changing the bandage,” said study co-author Athanasios Milionis, PhD, of ETH. “Reopening wounds is a major problem, primarily because of the risk of infection, including from dangerous hospital germs, a risk that is especially high when changing bandages.”

The conventional method to deal with bleeding is mechanically pressing the wound with a cotton gauze, which causes unnecessary blood loss and gauze adhesion onto the wound. Blood absorbed in the gauze forms a solid clot-gauze composite, forced peeling of which often tears the wound and causes secondary bleeding and pain. This makes it difficult to replace the old wound dressing without causing secondary infections or hemorrhage, in procedures ranging from common wounds to surgery, and to the extreme case of hemophilic patients, where excessive bleeding will occur before coagulation.

Related Links:
Swiss Federal Institute of Technology
National University of Singapore



Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Syringes
Prefilled Saline Flush Syringes
Radiation Safety Barrier
RayShield Intensi-Barrier
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The new 3D heart mapping system visualizes all four chambers in real time (Photo courtesy of UPV)

Whole-Heart Mapping Technology Provides Comprehensive Real-Time View of Arrhythmias

Cardiac arrhythmias can be difficult to diagnose and treat because current mapping systems analyze the heart one chamber at a time. This fragmented view forces clinicians to infer electrical activity they... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.