We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




3D-Printed Implants Emalute Natural Bone Function

By HospiMedica International staff writers
Posted on 29 Sep 2021
Print article
Image: The STALIF C FLX and STALIF M FLX 3D-printed interbody devices (Photo courtesy of Centinel Spine)
Image: The STALIF C FLX and STALIF M FLX 3D-printed interbody devices (Photo courtesy of Centinel Spine)
A 3D-printed porous titanium platform provides an environment that supports bony in-growth, on-growth, and thru-growth.

The Centinel Spine (West Chester, PA, USA) STALIF C FLX and STALIF M FLX devices are integrated interbody implants that containing a proprietary, interconnected titanium lattice with a structure and modulus of elasticity similar to human bone. The mimicking technology, called FUSE-THRU, provides optimized mechanical, visual, and osteophilic environments that reduce stress shielding by also providing equivalent subsidence and performance to polyetheretherketone (PEEK), and also enable fusion assessment.

The radiolucent FUSE-THRU sections are designed to reduce imaging artifacts and improve visibility--compared to solid titanium implants--enhancing intra-operative visualization, as well as enabling superior post-operative fusion assessment. In addition, FLX STALIF implants are designed to provide compressive fixation at the fusion site by drawing the vertebral bodies onto both the implant itself and the graft material so as to enhance opportunities for fusion, in line with Wolff's Law of Bone Healing.

“We remain dedicated to continued innovation and furthering scientific evidence in advancing spine care,” said Steve Murray, CEO of Centinel Spine, commenting on the first implantation (outside of the US), in Argentina. “FLX has the preferred combination of porosity, micro, and nano-structural characteristics, while maintaining strength and integrity through intentional design. We are proud to be able to make our technology available to even more patients on a global scale.”

Interbody devices are designed to replace the intervertebral disc of the spine, enhancing stability in the region while the spine fuses. Over time, the packed bone graft material is gradually replaced by natural bone, forming a solid piece. Fusion procedures typically use a posterior fixation device to the associated level, since the surgeons will implant interbody devices from an anterior approach and flip the patient over to implant a posterior pedicle screw device. This combination increases fusion success.

Related Links:
Centinel Spine

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Hysteroscopic Fluid Management System
HysteroFlow/HysteroBalance II

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.