We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Remote Programming of Cardiac Implantable Devices Safe for MRI Scan, Shows Study

By HospiMedica International staff writers
Posted on 05 May 2022
Print article
Image: Study shows remote programming of cardiac implantable devices is safe for MRI scan (Photo courtesy of Pexels)
Image: Study shows remote programming of cardiac implantable devices is safe for MRI scan (Photo courtesy of Pexels)

More than 60 million magnetic resonance imaging (MRI) scans are performed worldwide each year, but imaging for the millions of patients with cardiac implantable electronic devices (CIEDs) such as pacemakers is a logistical challenge, because of concerns with how the magnetic field affects the implants. Now, a new study reveals safe and effective reprogramming of these devices is possible, even from a remote location. Remote programming could reduce the need to reschedule MRI scans and other procedures that require device programming in case there is no device representative or other qualified personnel present on-site to perform the task.

Researchers at the University of Missouri School of Medicine (Columbia, MO, USA) conducted an observational study of 209 patients at MU Health Care’s University Hospital who underwent remote programming of their device for MRI using Medtronic RM CareLink technology. Of those scans, 51 were performed urgently. An MRI technician started each session by contacting an off-site operator and placing a programming wand on the patient’s CIED, enabling the programmer to access the device remotely and switch to an MRI-safe mode. After completing the scan, the remote programmer returned the device to the patient’s baseline settings.

“During this study, none of the patients experienced any symptoms during the scan, no one needed any changes to the baseline settings afterward, and there were no technology issues,” said senior author Sandeep Gautam, MD, associate professor of clinical medicine. “The estimated time saved per scan was 18 to 38 minutes per patient, calculated by measuring the device representative's travel time to the MRI suite.”

“We believe this technology will reduce unnecessary use of health care resources and manpower,” added Gautam. “This will eventually lead to reduction in health care costs, as it will require a smaller number of personnel for device programming, eliminate travel cost and may be especially helpful in rural areas where access to health care is limited.”

Related Links:
University of Missouri School of Medicine 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Thyroid Shield
Standard Thyroid Shield

Print article
Detecto

Channels

Critical Care

view channel
Image: Vascular flow modeling exemplar; intracranial aneurysm flow, treatment and thrombosis (Photo courtesy of University of Leeds)

Faster, More Accurate Blood Flow Simulation to Revolutionize Treatment of Vascular Diseases

The field of vascular flow modeling is vital for understanding and treating vascular diseases, but traditionally, these methods require extensive labor and computation. Now, researchers have made groundbreaking... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.