We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Feather Safety Razor

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Breakthrough Tech Pinpoints Seizure-Originating Brain Regions and Predicts Outcome Before Surgery

By HospiMedica International staff writers
Posted on 13 May 2022
Print article
Image: Breakthrough tech enables seizure localization in minutes (Photo courtesy of Pexels)
Image: Breakthrough tech enables seizure localization in minutes (Photo courtesy of Pexels)

Fresh techniques to aid seizure diagnosis and surgical planning stand to benefit millions of epilepsy patients, but the path to progress has been slow and challenging. Researchers have now introduced a novel network analysis technology that uses minimally invasive resting state electrophysiological recordings to localize seizure onset brain regions and predict seizure outcomes.

In current practice, prior to any surgical removal of tissues, clinicians often drill holes into the skull to place recording electrodes atop the brain. The electrodes record electrical activity in the brain over the course of days or weeks, however long it takes for seizure(s) to materialize, to inform of where seizure(s) are taking place. While necessary, this practice can be time-consuming, costly, and uncomfortable for patients to stay in hospital for days to weeks. The novel network analysis technique developed by researchers at Carnegie Mellon University (Pittsburgh, PA, USA) can pinpoint seizure-originating brain regions and predict a patient’s seizure outcome before surgery, using only 10 minutes of resting state recordings without the need to wait for seizures to occur.

The technique extracts information flow across all recording electrodes and makes a prediction based on the different levels of information flow. The researchers discovered that the information flow from non-seizure generating tissue to seizure originating tissue is much larger than the inverse direction, and the notably greater difference in information flow often leads to a seizure-free outcome. Once implemented, this approach could have a major impact to inform clinicians and families if a patient should pursue a surgery and what the likelihood of surgical success would be.

“In a group of 27 patients, our accuracy of localizing seizure onset brain regions, was 88%, which is a fascinating result,” explained Bin He, professor of biomedical engineering at Carnegie Mellon University. “We use machine learning and network analysis to analyze a 10-minute resting state recording to predict where the seizure will come out. While this method is still invasive, it is to a significantly decreased degree, because we’ve taken the recording timeline from multiple days or even weeks down to 10 minutes.”

“In the same group of patients, our accuracy of predicting their seizure outcome, or the possibility of becoming seizure-free post-surgery, was 92%,” added Bin He. “Eventually, this type of data could guide patients toward or away from surgery, and it is information that is not readily available today.”

Related Links:
Carnegie Mellon University 

Print article


Critical Care

view channel
Image: EsoGuard has demonstrated over 90% specificity and 90% sensitivity in identifying Barrett’s Esophagus (Photo courtesy of Lucid Diagnostics)

Biomarker Based Non-Endoscopic Technology Identifies Risk for Esophageal Cancer

Barrett's esophagus (BE) is the benign and treatable precursor condition to esophageal adenocarcinomas (EAC) which is usually diagnosed at an advanced stage and is difficult to treat. Finding BE, a sign... Read more

Patient Care

view channel
Image: Future wearable health tech could measure gases released from skin (Photo courtesy of Pexels)

Wearable Health Tech Could Measure Gases Released From Skin to Monitor Metabolic Diseases

Most research on measuring human biomarkers, which are measures of a body’s health, rely on electrical signals to sense the chemicals excreted in sweat. But sensors that rely on perspiration often require... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.