We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Technology Helps Surgeons Locate Patient’s Nerves and Avoid Intraoperative Nerve Damage

By HospiMedica International staff writers
Posted on 06 Jun 2022
Print article
Image: A new technology has found the solution to the common surgical problem of nerve damage (Photo courtesy of Oregon State University)
Image: A new technology has found the solution to the common surgical problem of nerve damage (Photo courtesy of Oregon State University)

A patient can face a double-digit percentage chance of sustaining a nerve injury during surgery, depending upon the procedure. For example, people needing their thyroid gland removed are looking at a 15% likelihood of voice changes resulting from damage to their recurrent laryngeal nerves. Now, a new technology can help surgeons know where a patient’s nerves are, lessening the chance of nerve damage. The technology is based on hydrogels, three-dimensional networks of polymers that absorb and retain large amounts of water, and takes aim at the surgical complication of nerve damage that is widespread and persistent.

The collaborative research involving scientists from Oregon State University (Portland, OR, USA) is an important step toward improving a nerve sparing technique called fluorescence guided surgery, or FGS. Specific tissues, in this case nerves can be better detected if they fluoresce – i.e., emit light after absorbing light or some other kind of electromagnetic radiation. For the tissues to do that, they need to be treated with a fluorophore, microscopic molecules that absorb and send out light of specific wavelengths. The scientists developed an effective hydrogel fluorophore based on compounds called pluronics. Also known as poloxamers, pluronics are polymers synthesized by the condensation of ethylene oxide and propylene oxide.

“Nerve sparing techniques have been around for decades, but nerve identification and sparing remain a big challenge, with success rates strongly correlated with an individual surgeon’s skill and experience,” said Adam Alani, a researcher in the OSU College of Pharmacy. “Intraoperative nerve damage affects all surgical specialties and represents a significant problem even for surgeries that are performed all of the time like prostatectomies, hysterectomies, hernia repair and thyroidectomies.”

Successful testing in two animal models – mouse and pig – suggests the new technology is “a clinically viable method for fluorescence guided nerve sparing during thyroidectomy as well as other procedures,” Alani said. And because pluronics already have FDA approval, the technology is eligible for fast-tracked regulation under the agency’s guidelines for “exploratory investigational new drugs.”

The guidelines allow for early phase 1 clinical trial exploratory approaches involving safe microdoses of potential drug candidates, enabling researchers to move ahead more quickly than usual. “Directly administering a contrast agent in the treatment area is an attractive alternative to systemic administration of fluorescent probes,” Alani said. “Selectively labeling tissues only within the surgical field requires a significantly lower dose than systemic administration.”

Related Links:
Oregon State University 

Print article



view channel
Image: ‘Hologram patients’ developed to help train doctors and nurses (Photo courtesy of University of Cambridge)

Life-Like Hologram Patients Train Doctors for Real-Time Decision Making in Emergencies

A medical training project using 'mixed reality' technology aims to make consistent, high-level and relevant clinical training more accessible across the world. University of Cambridge (Cambridge, UK)... Read more

Critical Care

view channel
Image: New device could provide alternative to opioids and other highly addictive drugs (Photo courtesy of Northwestern University)

Dissolving Implantable Device Can Manage Post-Operative Pain Without Drugs

Researchers have developed a small, soft, flexible implant that relieves pain on demand without the use of drugs. The first-of-its-kind device could provide a much-needed alternative to opioids and other... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more


view channel
Image: Expanding the role of autonomous robots can mitigate the shortage of physicians (Photo courtesy of Pexels)

Robot-Assisted Surgical Devices Market Driven by Increased Demand for Patient-Specific Surgeries

An aging population and accompanying retirements will cause a significant physician shortfall of 55,000 to 150,000 by 2030, creating a gap in the healthcare system. Expanding the role of autonomous robots... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.