We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Rigel Medical - Seaward

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
08 Jun 2023 - 10 Jun 2023

World's Smallest Remote-Controlled Robot Crab Could Perform Surgeries

By HospiMedica International staff writers
Posted on 03 Jun 2022
Print article
Image: Smaller than a flea, the robotic crab can walk, bend, twist, turn and jump (Photo courtesy of Northwestern University)
Image: Smaller than a flea, the robotic crab can walk, bend, twist, turn and jump (Photo courtesy of Northwestern University)

A team of engineers has developed the smallest-ever remote-controlled walking robot in the form of a tiny crab, coming one step closer to the idea of micro-sized robots performing minimally invasive surgeries. Just a half-millimeter wide, the tiny crabs can bend, twist, crawl, walk, turn and even jump. The researchers also developed millimeter-sized robots resembling inchworms, crickets and beetles. Although the research is exploratory at this point, the researchers believe their technology might bring the field closer to realizing micro-sized robots that can perform practical tasks inside tightly confined spaces. Last September, the same team had introduced a winged microchip that was the smallest-ever human-made flying structure.

Smaller than a flea, the crab is not powered by complex hardware, hydraulics or electricity. Instead, its power lies within the elastic resilience of its body. To construct the robot, the researchers at Northwestern University (Evanston, IL, USA) used a shape-memory alloy material that transforms to its “remembered” shape when heated. In this case, the researchers used a scanned laser beam to rapidly heat the robot at different targeted locations across its body. A thin coating of glass elastically returns that corresponding part of structure to its deformed shape upon cooling.

As the robot changes from one phase to another - deformed to remembered shape and back again - it creates locomotion. Not only does the laser remotely control the robot to activate it, the laser scanning direction also determines the robot’s walking direction. Scanning from left to right, for example, causes the robot to move from right to left. To manufacture such a tiny critter, the team turned to a technique they introduced eight years ago - a pop-up assembly method inspired by a child’s pop-up book.

First, the team fabricated precursors to the walking crab structures in flat, planar geometries. Then, they bonded these precursors onto a slightly stretched rubber substrate. When the stretched substrate is relaxed, a controlled buckling process occurs that causes the crab to “pop up” into precisely defined three-dimensional forms. With this manufacturing method, the Northwestern team could develop robots of various shapes and sizes.

“Robotics is an exciting field of research, and the development of microscale robots is a fun topic for academic exploration,” said John A. Rogers, who led the experimental work. “You might imagine micro-robots as agents to repair or assemble small structures or machines in industry or as surgical assistants to clear clogged arteries, to stop internal bleeding or to eliminate cancerous tumors - all in minimally invasive procedures.”

Related Links:
Northwestern University 

Gold Supplier
12-Channel ECG
CM1200B
New
Digital X-Ray Flat Panel Detector
2121DXV
New
Flat Panel Detector (FPD)
DRX-LC Detector
New
Gynecological Examination & Treatment Chair
medi-matic

Print article
FIME - Informa

Channels

AI

view channel
Image: The AI tool can also tackle dangerous inequalities in heart attack diagnosis (Photo courtesy of Freepik)

AI Algorithm Integrates Cardiac Troponin Test Results with Clinical Data to Quickly Rule out Heart Attacks in Patients

The accepted standard for diagnosing myocardial infarction, or heart attack, involves assessing the blood for troponin levels. However, this approach applies the same benchmark for all patients, failing... Read more

Critical Care

view channel
Image: The novel intravascular, catheter-based technology is designed to treat pulmonary hypertension (Photo courtesy of Freepik)

Minimally Invasive Catheter-Based Technology Treats Pulmonary Hypertension

Pulmonary hypertension, a deadly condition impacting roughly 500,000 patients annually across the world, is currently categorized as a rare disease. As it stands, available treatment options are restricted,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: VCM viscoelastic testing instrument provides rapid, real-time hemostasis assessment at POC (Photo courtesy of Entegrion)

Next Gen Viscoelastic Coagulation Monitor Enables Rapid Hemostasis Assessment at Patient Side

The use of viscoelastic coagulation testing is on the rise for various applications such as trauma, surgery, obstetrics, major disease management, and more. It provides crucial information not obtained... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.