We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Smart Laparoscopic Tool Allows Surgeons to “Feel” Tissues During Minimally-Invasive Surgery

By HospiMedica International staff writers
Posted on 27 Jun 2022
Print article
Image: A smart laparoscopic tool brings missing sense of touch to minimally-invasive surgery (Photo courtesy of NYU Abu Dhabi)
Image: A smart laparoscopic tool brings missing sense of touch to minimally-invasive surgery (Photo courtesy of NYU Abu Dhabi)

Minimally-invasive surgery (MIS), also known as “keyhole surgery,” has many advantages. Using specialized surgical instruments with thin, long tube-like shafts associated with endoscopes and surgical graspers, needles, and shears, MIS allows visualization and surgical access to target organs through small incisions. It requires shorter recovery times than “open surgery” and often involves less pain and scarring. Nonetheless, it offers surgeons limited field of vision and no ability to “feel” relative differences and stiffness of tissues during operation. Therefore, MIS operations are associated with the “lost sense of touch” dilemma for surgeons. Now, researchers have developed a simple, yet effective approach for on-demand tactile sensing in minimally-invasive surgery, overcoming the key limitation of the inability of surgeons to “feel” tissues during an operation.

A team of researchers from the NYU Abu Dhabi (Abu Dhabi, UAE) successfully tested the efficacy of their new tool, which uses off-the-shelf sensors integrated into a laparoscopic grasper. The researchers incorporated a system of commercially available sensors into common laparoscopic instruments to develop their Smart Laparoscopic Forceps (SLF), a system that measures in real-time the grasping force and angle of the grasped tissue using a force sensor on the grasping jaw and an angle sensor at the handle.

The data is analyzed using a microcontroller, and the grasping feedback is displayed on a monitor. Based on the deformation parameters captured by the two sensors, this smart tool gives the surgeon a relative stiffness index of the tissue on top of the applied force magnitude to help with decision-making throughout the surgery. Using this approach, conventional surgical tools can be made smart with tactile feedback features, on-demand, and in plug-and-play configuration.

The prototype was tested in the lab with the help of surgeons using different soft and hard tissues, including home-fabricated samples with known stiffness, raw and cooked chicken meat samples, as well as sheep samples from digestive organs including stomach and bowel. Results showed that the developed tool significantly helped them in accurately sort the different samples based on their stiffness. Further, the developed tool was able to identify hidden embedded lumps within these samples, demonstrating the capability to offer surgeons tactile feedback information including grasping forces, organ stiffness, and the presence of embedded lumps.

“During open surgeries, surgeons use their fingers to interact with internal tissues and organs, giving them tactile information that informs real-time surgical decisions,” said Wael Othman, a PhD candidate in Mechanical Engineering and the first author of the study. “But open surgeries come with costs, including the need for major incisions and potential serious consequences, including pain, risk of infection and lengthy recovery times. Our approach is exciting because it gives surgeons similar tactile information that, until now, has been missing during minimally-invasive surgeries.”

Related Links:
NYU Abu Dhabi

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Oxidized Zirconium Implant Material
OXINIUM

Print article

Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.