We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Surgeons Perform World’s First Completely Robot-Supported Microsurgical Operations

By HospiMedica International staff writers
Posted on 26 Aug 2022
Print article
Image: The operations robot (right) is networked with a robotic microscope (left) (Photo courtesy of University of Münster)
Image: The operations robot (right) is networked with a robotic microscope (left) (Photo courtesy of University of Münster)

In what is being seen as a great success for robotic microsurgery, a team of scientists has carried out the first completely robot-supported microsurgical operations on humans. The physicians used an innovative operating method in which a new type of operations robot, designed especially for microsurgery, is networked with a robotic microscope. This approach makes it possible for the operating surgeon to be completely taken out of the operating area.

Experts from the Centre for Musculoskeletal Medicine at the University of Münster (Münster, Germany) have been using this method for a good two months. So far, five operations have been successfully performed, with many more set to follow. The specialists use the method for example on patients with breast cancer who need complex breast reconstructions, or after accidents in which patients need tissue transplants. With the aid of the robot and the robotic microscope, the microsurgeons can for example join up again the finest anatomical structures such as blood vessels, nerves or lymphatic vessels, which often have a diameter of only 0.3 millimeters.

During the operation, the robot – the so-called Symani Surgical System – adopts human hand movements via an electromagnetic field and joysticks. The robot carries out the operating surgeon’s movements, reduced in size by up to 20 times, via tiny instruments and, in doing so, completely eliminates any shaking present in (human) hands. A robotic microscope is connected to the operation robot, and this microscope shows the area being operated on via a so-called 3D Augmented Reality Headset with two high-resolution monitors. This headset contains binoculars which are able to combine the real world with virtual information. In this way, the surgeon’s head movements can be recorded and transferred to the robot, making even complicated viewing angles possible on the area being operated on. In addition, the operating surgeon can access a variety of menus and perform functions with the robot without using his or her hands.

The new technology also has the advantage that operating surgeons can adopt a relaxed posture – whereas they otherwise have to perform operations in a strenuous posture over a period of several hours. During training with students and established microsurgeons, the physicians were able to demonstrate that, while using the robotic system, the learning curve, the handling of the instruments, and the ergonomics all demonstrated an improvement over conventional operating techniques. In the coming weeks and months, the physicians will be performing further operations and, in the process, collect data that they will be evaluating in scientific studies. Important issues to be addressed are, in particular, improvements to the quality of operations and to ergonomics.

“This new method for operations enables us to work with a much higher degree of delicacy and precision than is possible with conventional operating techniques,” said Dr. Maximilian Kückelhaus who led the team of physicians. “As a result, less tissue is destroyed and patients recover faster.”

“Our hope is that with this new method we can not only perform operations with a greater degree of precision and safety – but also, in the case of the tiniest structures, go beyond limits imposed by the human body. Not having to be at the operating table can also mean that one day the operating surgeon will no longer have to be physically present. An expert might be able to perform special operations at any one of several locations – without having to travel and be there in person,” added Maximilian Kückelhaus, looking into the future.

 


Print article
IIR Middle East

Channels

Critical Care

view channel
Image: Size comparison of the new mTP laser array (Photo courtesy of Rockley)

New Chip Technology Paves Way for Tiny Wearable Devices to Detect and Measure Biomarkers

Scientists have developed what is believed to be the world’s first micro-transfer-printed (mTP) silicon-photonics-based laser for commercial applications. This groundbreaking achievement by Rockley Photonics... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.