We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Innovative Light-Triggered Coating for Medical Devices Fights Bacterial Infections

By HospiMedica International staff writers
Posted on 03 Nov 2022
Print article
Image: A durable coating for medical devices that is activated by light provides on-demand disinfection (Photo courtesy of Pexels)
Image: A durable coating for medical devices that is activated by light provides on-demand disinfection (Photo courtesy of Pexels)

Biofilms are the colonies of bacteria that grow on the surface of medical devices, such as catheters, implants, and wound meshes, and correlate with nosocomial infections. Bacterial biofilms on medical devices may result in infections and pose a serious threat to public health and economy, causing worldwide morbidity. Now, a team of researchers has developed a durable coating for medical devices which is activated by light, providing on-demand disinfection. The functional light-triggered coating for medical devices is very durable (stays there and retains its properties) and can destroy bacterial biofilms. The potential applications are for such coatings to be employed on medical devices that are often colonized by bacteria, such as catheters, endotracheal tubes, and wound dressings/meshes.

Light-triggered photocatalytic coatings destroy biofilms on-demand, but the challenge so far has been two-fold: first it is difficult to find materials that are activated by white light (and not harmful UV light) and second, to have them stable on medical devices and retain the activity over several cycles. Researchers at the Karolinska Institutet (Stockholm, Sweden) tackled both of these major challenges by producing materials that can be activated with white light and also inventing a new method to make these coatings highly durable, enabling them useful in repeated treatments.

The researchers produced the photocatalytic nanoparticle coating by a highly versatile nanomanufacturing technology, flame aerosol synthesis, and deposited them as porous films on the surface of the medical device. The researchers then went on to infuse the porous nanoparticle film with silicone (a polymer often used in medical devices) with a precise thickness, thereby dramatically increasing the durability of the produced coating. The researchers grew bacterial biofilms on the medical device - mimicking surfaces. The devices were then briefly irradiated for 15-90 minutes with white light which resulted in the on-demand biofilm destruction.

Biofilm infections tantalize several patients and the innovation here could mitigate this global health challenge by reducing such infections. Especially when such infections occur in immunocompromised patients, the clinical benefit is very high. The researchers have filed a patent application for their invention and are now further developing the product to assist in its rapid translation to clinics. Their next steps will be to develop this technology further as a coating on existing medical devices such as catheters, endotracheal tubes, and wound meshes/dressings, to name a few examples.

Related Links:
Karolinska Institutet

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Ceiling-Mounted Digital Radiography System
Radiography 5000 C

Print article

Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.