Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Implantable Neuro-Chip Uses Machine Learning Algorithm to Detect and Treat Neurological Disorders

By HospiMedica International staff writers
Posted on 31 Jan 2023

Using a combination of low-power chip design, machine learning algorithms, and soft implantable electrodes, researchers have produced a neural interface that can identify and suppress symptoms of different types of neurological disorders. More...

NeuralTree, a closed-loop neuromodulation system-on-chip, developed by researchers at EPFL (Lausanne, Switzerland) can detect and alleviate disease symptoms. By utilizing a 256-channel high-resolution sensing array and an energy-efficient machine learning processor, the system can extract and classify a wide range of biomarkers from real patient data and animal models of disease in-vivo, resulting in highly accurate prediction of symptoms. NeuralTree works by extracting neural biomarkers – patterns of electrical signals believed to be associated with specific neurological disorders – from brain waves. It classifies the signals and indicates the possibility of an approaching epileptic seizure or Parkinsonian tremor, for instance. Upon detection of a symptom, a neurostimulator located on the chip becomes activated and sends out an electrical pulse to block it.

NeuralTree’s unique design provides the highest levels of efficiency and versatility as compared to the state-of-the-art. The chip features 256 input channels, as compared to 32 for previous machine-learning-embedded devices, enabling the implant to process more high-resolution data. The chip’s area-efficient design makes it extremely small (3.48mm2), creating significant potential for scalability to additional channels. The integrated ‘energy-aware’ learning algorithm that penalizes features consuming a lot of power also makes NeuralTree extremely energy efficient.

The system can also detect a wider range of symptoms than other devices, which focus mainly on the detection of epileptic seizures. The researchers trained the chip’s machine learning algorithm on datasets from both epilepsy and Parkinson’s disease patients, and accurately classified pre-recorded neural signals from both the categories. With the aim of making neural interfaces more intelligent for more effective disease control, the researchers are already looking ahead to innovate further. As a next step, the team plans to enable on-chip algorithmic updates in order to keep up with the evolution of neural signals.

“To the best of our knowledge, this is the first demonstration of Parkinsonian tremor detection with an on-chip classifier,” said Mahsa Shoaran of the Integrated Neurotechnologies Laboratory in the School of Engineering. “Eventually, we can use neural interfaces for many different disorders, and we need algorithmic ideas and advances in chip design to make this happen.”

Related Links:
EPFL


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Ureteral Dilatation Balloon
Dornier Equinox
Semi‑Automatic Defibrillator
Heart Save AED (ED300)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.