Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




New Technique Combines ML with SWIR Fluorescence Imaging for Precise Surgical Tumor Removal

By HospiMedica International staff writers
Posted on 30 Mar 2023

Surgical tumor removal remains among the common procedures in cancer treatment, with approximately 45% of cancer patients undergoing this procedure at some point. More...

Recent advances in imaging and biochemical technologies have improved a surgeon's ability to distinguish between tumors and healthy tissue. One such technique that enables this distinction is "fluorescence-guided surgery" (FGS). A new study proposes a method for classifying healthy and tumor cells using an intensity-independent approach. This method combines machine learning with short-wave infrared (SWIR) fluorescence imaging to precisely detect the boundaries of tumors.

FGS involves staining the patient's tissue with a dye that emits infrared light when irradiated with a special light source. The dye selectively binds to the surface of tumor cells, enabling the detection of the location and extent of the tumor based on the emitted lightwaves. However, most FGS-based methods rely on the absolute intensity of the infrared emissions to differentiate pixels corresponding to tumors. This approach is problematic since intensity is influenced by lighting conditions, camera setup, dye quantity, and staining duration. Therefore, intensity-based classification can lead to inaccurate interpretation.

The new technique developed by researchers at the University College London (London, UK) involves capturing multispectral SWIR images of the dyed tissue, rather than relying solely on measuring the total intensity over one wavelength. To achieve this, the team sequentially placed six different wavelength frequency (color) filters in front of their SWIR optical system and registered six measurements for each pixel. By doing this, the researchers were able to create spectral profiles for each type of pixel, including background, healthy tissue, and tumor. Subsequently, they trained seven machine learning models to accurately identify these spectral profiles in multispectral SWIR images.

The research team conducted in vivo training and validation of the models using SWIR images of an aggressive type of neuroblastoma in a lab model. They also evaluated various normalization techniques to make pixel classification independent of absolute intensity and dependent only on the pixel's spectral profile. The study involved testing seven machine learning models, with the top-performing model achieving a remarkable per-pixel classification accuracy of 97.5%. Specifically, the accuracies for tumor, healthy, and background pixels were 97.1%, 93.5%, and 99.2%, respectively.

In addition, the model's results were found to be highly robust against variations in imaging conditions due to the normalization of the spectral profiles. This is desirable for clinical applications because testing of new imaging technologies is typically done in ideal conditions that are not reflective of the real-world clinical setting. Based on their findings, the research team is optimistic about the potential of this methodology. They believe that conducting a pilot study to implement it in human patients could lead to significant advancements in the field of FGS.

Multispectral FGS has the potential to go beyond the current study's scope. It can be used to remove unwanted reflections and surgical or background lights from images, as well as offer noninvasive ways of measuring lipid content and oxygen saturation. Multispectral systems also allow for the simultaneous use of multiple fluorescent dyes with different emission characteristics since the signals from each dye can be untangled from the total measurements based on their spectral profiles. This multiple dye approach can target multiple aspects of a disease, providing surgeons with even more information. Future studies will undoubtedly explore the full potential of multispectral FGS, unlocking doors to more effective surgical procedures for treating cancer and other illnesses.

Related Links:
University College London


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Hemostatic Agent
HEMOBLAST Bellows
Bipolar Coagulation Generator
Aesculap
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.