We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




New Surgical Sealing Biomaterial Could Eliminate Standard Methods of Suturing and Stapling

By HospiMedica International staff writers
Posted on 31 Mar 2023
Print article
Image: New robust thermosensitive bioadhesives can improve surgical sealing (Photo courtesy of Pexels)
Image: New robust thermosensitive bioadhesives can improve surgical sealing (Photo courtesy of Pexels)

For surgical wounds to be properly closed, the sealant material used must effectively seal on wet, slippery tissue surfaces that vary in shape and may involve tissue movement, such as an expanding lung, or have crumbly textures. The application and effectiveness of the sealant must also occur within a suitable timeframe for surgical procedures. Traditional methods such as suturing and stapling can be ineffective and time-consuming, leading to increased blood loss. Fibrin-based bioadhesive sealants are expensive, exhibit insufficient adhesion, and are susceptible to viral transmission. Although commercial gelatin-based wound dressings offer biocompatibility, low cost, and hemostatic effectiveness, they lack adhesive strength due to inherent brittleness. Previous efforts to improve adhesion through functionalization with catechol, a naturally occurring compound that can provide adhesive capabilities when bound to gelatin, have been made. However, the limited number of binding sites on the gelatin results in a low level of adhesion achievable through catechol functionalization.

Scientists from the Terasaki Institute for Biomedical Innovation (TIBI, Los Angeles, CA, USA) have utilized innovative chemistry to create an injectable biomaterial that has considerably enhanced adhesive strength, stretchability, and toughness. This hydrogel, based on gelatin and modified chemically, has numerous appealing features, including fast gelation at room temperature and customizable levels of adhesion. This specially designed biomaterial is ideal as a surgical wound sealant due to its injectability and controllable adhesion, as well as its superior ability to stick to a range of tissue and organ surfaces.

The researchers utilized caffeic acid (CA), a naturally occurring compound found in coffee and olive oil, to enhance the tissue adhesion properties of gelatin. To achieve this, they first oxidized CA to create CA oligomers (CAO), which consist of a small number of repeating catechol units. By coupling these CA derivatives with gelatin, they were able to significantly improve the chemical binding of catechol groups and enhance their adhesive capabilities. As a result, the engineered bioadhesive sealant exhibits superior adhesive strength, stretchability, toughness, and injectability, and can rapidly gel at the wound site, while maintaining stable adhesion under physiological conditions.

In addition, the sealants were engineered to exhibit selective tissue adhesion. This is crucial for effective sealing, as there must be strong bonding between the sealant and tissue at the interface, while avoiding adhesion on the opposite face of the sealant that is exposed to bodily fluids. Validation tests conducted on wet collagen sheets, as well as burst pressure experiments to assess the limits of adhesive strength, confirmed the efficacy of the new sealant and contradicted previous reports suggesting adverse effects of oxidative chemistry.

The newly developed sealant was put to the test on pig lung, heart, and bladder wounds in laboratory experiments. Results showed that the sealant's adhesive strength was significantly greater than that of commercial gelatin-based sealants. Even after being scraped and twisted experimentally, the sealant remained firmly affixed to the tissue surface. The biocompatibility of the sealant was also confirmed through testing. The sealant exhibited drug loading and drug release capabilities and demonstrated potential for promoting antioxidant effects that can aid in wound healing. This versatile technique can be applied to other biomaterials to impart strong adhesion.

“Our team has utilized manipulative and strategic chemistry to significantly improve adhesive strength and versatility in biomaterials,” said Ali Khademhosseini, TIBI’s Director and CEO. “This creates exciting possibilities for more effective surgical wound management in the clinic.”

Related Links:
TIBI

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Mattress Replacement System
Carilex DualPlus
New
Digital Radiographic System
OMNERA 300M

Print article

Channels

Critical Care

view channel
Image: Changes in immune cells can predict patient recovery following out-of-hospital cardiac arrest (Photo courtesy of Adobe Stock)

Activating T Cells Could Improve Neurological Outcomes After Cardiac Arrest

Despite advancements in cardiopulmonary resuscitation (CPR) and improved hospital access, survival rates after out-of-hospital cardiac arrest (OHCA) remain low, with only about 10% of patients surviving.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.